Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics

协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作

基本信息

  • 批准号:
    2228001
  • 负责人:
  • 金额:
    $ 36.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Cybersecurity defense operations (cyber-ops) are in dire need of effective and expedited learning programs for practicing professionals to infuse data analytics (i.e., data science, artificial intelligence, and machine learning) into their day-to-day tasks. To combat the evolving threat landscape, effective cyber-ops often involve a team of cybersecurity analysts and engineers with complementary expertise. The analysts need effective, usable, and potentially customized data analytics, which are developed by or in collaboration with the engineers. Currently, in-service training for cybersecurity analysts and engineers who need to use data analytics for cyber-ops are limited. No existing program addresses the need to develop the collaborative mindsets and practices that are necessary to work effectively together. This project aims to develop an innovative dual-track learning program for working cybersecurity analysts and engineers that leverages role-playing within a simulated organization and involves tasks that are specific to each group as well as tasks where they need to work together as a team. This innovative design will help promote collaboration while also enhancing learning of specific data analytic knowledge and skills needed by each type of professional in a realistic work environment. The program features a combination of remote learning modules and tasks, team coach sessions, and team-based incident response exercises. Progressively deeper learning about data analytics will occur as the scale and complexity of the cyber-op tasks assigned to the participants, as members of a simulated organization, are gradually increased. The program was designed in collaboration with education researchers. The design is informed by education theories and principles, including Identity Theory, Project-based Design, Understanding by Design, and Universal Design for Learning. The program’s design will also build on prior successful experiences with entry-level cybersecurity bootcamps employing simulations, cybersecurity competitions, and teaching and deployment of research advances for cyber-ops. The program will be refined through three iterations following a Design-based Research approach, and its effects evaluated by an external evaluation team.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络安全防御行动(网络行动)迫切需要有效和快速的学习计划,以供执业专业人员注入数据分析(即,数据科学、人工智能和机器学习)融入到日常工作中。为了应对不断变化的威胁形势,有效的网络行动通常需要一个由网络安全分析师和工程师组成的团队,他们具有互补的专业知识。分析师需要有效的、可用的和可能定制的数据分析,这些数据分析由工程师开发或与工程师合作开发。目前,需要使用数据分析进行网络操作的网络安全分析师和工程师的在职培训有限。没有任何现有的计划能够满足开发有效合作所需的协作思维和实践的需求。该项目旨在为网络安全分析师和工程师开发一个创新的双轨学习计划,该计划利用模拟组织内的角色扮演,并涉及每个团队特定的任务以及他们需要作为一个团队一起工作的任务。这种创新的设计将有助于促进协作,同时也加强了对每种专业人员在现实工作环境中所需的特定数据分析知识和技能的学习。该计划的特点是远程学习模块和任务,团队教练会议和基于团队的事件响应演习的组合。随着分配给参与者(作为模拟组织的成员)的网络操作任务的规模和复杂性逐渐增加,对数据分析的学习将逐步深入。该计划是与教育研究人员合作设计的。该设计是由教育理论和原则,包括身份理论,基于项目的设计,理解设计,通用设计学习。该计划的设计还将建立在先前成功的经验基础上,包括采用模拟,网络安全竞赛以及网络行动研究进展的教学和部署的入门级网络安全训练营。该项目将按照基于设计的研究方法进行三次迭代,并由外部评估团队对其效果进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanchieh Yang其他文献

Advancing hierarchical neural networks with scale-aware pyramidal feature learning for medical image dense prediction
通过具有尺度感知的金字塔特征学习推进分层神经网络用于医学图像密集预测
  • DOI:
    10.1016/j.cmpb.2025.108705
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Xiang Liu;James Liang;Jianwei Zhang;Zihan Qian;Phoebe Xing;Taige Chen;Shanchieh Yang;Chijioke Chukwudi;Liang Qiu;Dongfang Liu;Junhan Zhao
  • 通讯作者:
    Junhan Zhao

Shanchieh Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanchieh Yang', 18)}}的其他基金

Transatlantic (US-NI-RoI) Workshop on Collaborative IoT/CPS Research Opportunities – Security and Trust Beyond Hardening
跨大西洋 (US-NI-RoI) 协作物联网/CPS 研究机会研讨会 – 超越强化的安全与信任
  • 批准号:
    2049960
  • 财政年份:
    2020
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: A Criminology-Based Simulation of Dynamic Adversarial Behavior in Cyberattacks
EAGER:协作:基于犯罪学的网络攻击中动态对抗行为模拟
  • 批准号:
    1742789
  • 财政年份:
    2017
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
TWC: TTP Option: Small: Automating Attack Strategy Recognition to Enhance Cyber Threat Prediction
TWC:TTP 选项:小:自动化攻击策略识别以增强网络威胁预测
  • 批准号:
    1526383
  • 财政年份:
    2015
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
  • 批准号:
    2230609
  • 财政年份:
    2023
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了