EAGER: Large Scale Photonic Molecules and Applications

EAGER:大规模光子分子及其应用

基本信息

  • 批准号:
    1745612
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Title: EAGER: Realizing light-based photonic molecule circuits and applications.AbstractNontechnical Description The proposed exploratory research is aimed at realizing devices and functions with photonic molecules, the optical equivalent of electronic molecules. Research in photonics molecules seeks to use optically coupled photonic resonant microstructures to implement functions and behaviors with photons that are analogous to electronic atomic and molecular systems. Optical resonators can be thought of as photonic atoms and collections of photonic resonators can be designed to act like photonic molecules, enabling wide classes of new functions, systems and applications. The research outcome is expected to transform the field of photonic molecule technology by enabling new device functions that can be implemented using large-scale optical resonator arrays compatible with wafer-scale foundry integration. The ability to engineer molecular behavior based on photons has the potential to impact a wide variety of applications and revolutionize the performance, power, size and scaling of circuits difficult to realize with traditional electronics. The proposed work combines photonic molecule techniques with a silicon nitride based integrated low-loss optical waveguide technology to demonstrate two transformative functions, a non-magnetic optical isolator and a fast acquisition high quality factor photonic circuit for real-time low-jitter frequency and phase recovery. These functions have proved to be difficult to realize with current integrated photonic technologies. Optical isolators and real-time frequency and phase recovery are both device functions that will impact the development of integrated optical digital and analog circuits and a wide variety of applications. New device simulation and design tools, layout tools, fabrication methods and testing methodologies will be developed. Broader impact of the proposed technology is the potential to decrease size, weight, cost and power of high-speed data communications technologies, special purpose hardware simulations of complex problems out of reach of today's computers include many body physics, economic and transportation modeling, and medical solutions for biological sampling and disease detection.Technical DescriptionIn this exploratory research, the PI proposes to study the design and fabrication of photonic molecules utilizing large arrays of optical resonators, ranging from micrometer to millimeters sizes, implemented in ultra-low loss silicon nitride wafer-scale integration technology. Photonic molecules can realize functions and behaviors with photons analogous to electronic atomic and molecular systems. The goal of this project will be to demonstrate two functions based on photonic molecule technology: (i) a non-magnetic optical isolator and (ii) a fast acquisition high-Q circuit for fast frequency and phase recovery. These functions have proved to be difficult to realize with other device technologies. The approach to non-magnetic optical isolation utilizes discrete coupled-ring resonators whose refractive indices are modulated with a constant phase offset such that temporal spatial modulation imposes an effective angular moment and breaks optical reciprocity. Fast optical signal acquisition with high Q requires overcoming the time bandwidth product limits of passive resonators by implementing optical isolation between coupled low-Q resonators and high-Q resonators. The resonators will be designed and fabricated using deep etched coupled silicon nitride rings controlled with low power piezo electric tuning in a wafer-scale integration platform. The methods used will incorporate detailed numerical simulations, device design and layout techniques, advanced fabrication of low loss optical waveguide coupled resonator arrays and programming interconnects. The proposed work helps to develop new tools to design and fabricate photonic molecule based circuits that can be scaled to very large arrays and used for functions and applications difficult to implement today including digital optical circuits for communications and computation.
Title: EAGER: Realizing light-based photonic molecule circuits and applications.AbstractNontechnical Description The proposed exploratory research is aimed at realizing devices and functions with photonic molecules, the optical equivalent of electronic molecules. Research in photonics molecules seeks to use optically coupled photonic resonant microstructures to implement functions and behaviors with photons that are analogous to electronic atomic and molecular systems. Optical resonators can be thought of as photonic atoms and collections of photonic resonators can be designed to act like photonic molecules, enabling wide classes of new functions, systems and applications. The research outcome is expected to transform the field of photonic molecule technology by enabling new device functions that can be implemented using large-scale optical resonator arrays compatible with wafer-scale foundry integration. The ability to engineer molecular behavior based on photons has the potential to impact a wide variety of applications and revolutionize the performance, power, size and scaling of circuits difficult to realize with traditional electronics. The proposed work combines photonic molecule techniques with a silicon nitride based integrated low-loss optical waveguide technology to demonstrate two transformative functions, a non-magnetic optical isolator and a fast acquisition high quality factor photonic circuit for real-time low-jitter frequency and phase recovery. These functions have proved to be difficult to realize with current integrated photonic technologies. Optical isolators and real-time frequency and phase recovery are both device functions that will impact the development of integrated optical digital and analog circuits and a wide variety of applications. New device simulation and design tools, layout tools, fabrication methods and testing methodologies will be developed. Broader impact of the proposed technology is the potential to decrease size, weight, cost and power of high-speed data communications technologies, special purpose hardware simulations of complex problems out of reach of today's computers include many body physics, economic and transportation modeling, and medical solutions for biological sampling and disease detection.Technical DescriptionIn this exploratory research, the PI proposes to study the design and fabrication of photonic molecules utilizing large arrays of optical resonators, ranging from micrometer to millimeters sizes, implemented in ultra-low loss silicon nitride wafer-scale integration technology. Photonic molecules can realize functions and behaviors with photons analogous to electronic atomic and molecular systems. The goal of this project will be to demonstrate two functions based on photonic molecule technology: (i) a non-magnetic optical isolator and (ii) a fast acquisition high-Q circuit for fast frequency and phase recovery. These functions have proved to be difficult to realize with other device technologies. The approach to non-magnetic optical isolation utilizes discrete coupled-ring resonators whose refractive indices are modulated with a constant phase offset such that temporal spatial modulation imposes an effective angular moment and breaks optical reciprocity. Fast optical signal acquisition with high Q requires overcoming the time bandwidth product limits of passive resonators by implementing optical isolation between coupled low-Q resonators and high-Q resonators. The resonators will be designed and fabricated using deep etched coupled silicon nitride rings controlled with low power piezo electric tuning in a wafer-scale integration platform. The methods used will incorporate detailed numerical simulations, device design and layout techniques, advanced fabrication of low loss optical waveguide coupled resonator arrays and programming interconnects. The proposed work helps to develop new tools to design and fabricate photonic molecule based circuits that can be scaled to very large arrays and used for functions and applications difficult to implement today including digital optical circuits for communications and computation.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Blumenthal其他文献

Decannulation in Trisomy 21 patients undergoing laryngotracheal reconstruction
  • DOI:
    10.1016/j.ijporl.2022.111407
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Blumenthal;James A. Leonard;Andy Habib;Hengameh Behzadpour;Claire Lawlor;Diego Preciado
  • 通讯作者:
    Diego Preciado
Addressing social needs in oncology care: another research-to-practice gap
满足肿瘤护理的社会需求:另一个研究与实践的差距
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Emily Haines;Rachel C. Shelton;K. Foley;Rinad S Beidas;Emily V Dressler;Carol A. Kittel;K. Chaiyachati;O. Fayanju;Sarah A Birken;Daniel Blumenthal;Katharine A. Rendle
  • 通讯作者:
    Katharine A. Rendle
Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models
嵌合抗原受体巨噬细胞(CAR-M)在临床前模型中使 HER2+实体瘤对 PD1 阻断敏感
  • DOI:
    10.1038/s41467-024-55770-1
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Stefano Pierini;Rashid Gabbasov;Maria Cecilia Oliveira-Nunes;Rehman Qureshi;Alison Worth;Shuo Huang;Karan Nagar;Crystal Griffin;Lurong Lian;Yumi Yashiro-Ohtani;Kayleigh Ross;Christopher Sloas;Michael Ball;Benjamin Schott;Poonam Sonawane;Linara Cornell;Daniel Blumenthal;Sotheavy Chhum;Nicholas Minutolo;Kerri Ciccaglione;Lauren Shaw;Isaac Zentner;Hyam Levitsky;Olga Shestova;Saar Gill;Bindu Varghese;Daniel Cushing;Sabrina Ceeraz DeLong;Sascha Abramson;Thomas Condamine;Michael Klichinsky
  • 通讯作者:
    Michael Klichinsky
FRI-041 Enhancing restorative macrophage functions through genetic modification improves liver fibrosis in MASH models
FRI - 041通过基因改造增强修复性巨噬细胞功能可改善代谢相关脂肪性肝炎(MASH)模型中的肝纤维化
  • DOI:
    10.1016/s0168-8278(25)01064-5
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Christopher Sloas;Hongxue Shi;Xiaobo Wang;Yumi Ohtani;Julia Smith;MacKenzie Villano;Nancy Carson;Angela Mosebarger;James Montgomery;Linara Cornell;Jordan Reff;Sascha Abramson;Daniel Blumenthal;Thomas Condamine;Ira Tabas;Michael Klichinsky;Brad Zinker
  • 通讯作者:
    Brad Zinker
Quantification and Manipulation of MHC-I Delivery to Cell Plasma Membrane
  • DOI:
    10.1016/j.bpj.2010.12.2440
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Blumenthal
  • 通讯作者:
    Daniel Blumenthal

Daniel Blumenthal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Blumenthal', 18)}}的其他基金

Collaborative Research: NeTS FIND: Dynamic Optical Circuit Switched (DOCS) Networks for Future Large Scale Dynamic Networking Environments
合作研究:NeTS FIND:面向未来大规模动态网络环境的动态光路交换(DOCS)网络
  • 批准号:
    0627195
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Facility for Experimental Network Architecture Research
合作提案:实验网络架构研究设施
  • 批准号:
    0631297
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Infrastructure for Experimental Network Architecture Research
合作研究:实验网络架构研究的基础设施
  • 批准号:
    0541063
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: The Future of Optical Communications: Understanding the Choices
合作研究:光通信的未来:了解选择
  • 批准号:
    0447973
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Ultra-High-Capacity Optical Communications and Networking: Nano-Photonic Integration of Ultra-fast WDM Optical Communications Systems
超高容量光通信和网络:超快 WDM 光通信系统的纳米光子集成
  • 批准号:
    0123864
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9896283
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RESEARCH EQUIPMENT GRANT: Wavelength Tunable Wide Bandwidth Modulated Laser Source for All-Optical Networks and Optoelectronic Device Research
研究设备补助金:用于全光网络和光电器件研究的波长可调谐宽带调制激光源
  • 批准号:
    9412357
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9457148
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Logic Primitives for Multi-Wavelength Information Processing (SGER)
多波长信息处理的逻辑基元 (SGER)
  • 批准号:
    9404667
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: Speeding-up large-scale simulations of atmospheric composition
合作研究:EAGER:加速大气成分的大规模模拟
  • 批准号:
    2334508
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Speeding-up large-scale simulations of atmospheric composition
合作研究:EAGER:加速大气成分的大规模模拟
  • 批准号:
    2334507
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Solving the bait learning problem for large-scale DNA enrichment
合作研究:EAGER:解决大规模 DNA 富集的诱饵学习问题
  • 批准号:
    2118252
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Solving the bait learning problem for large-scale DNA enrichment
合作研究:EAGER:解决大规模 DNA 富集的诱饵学习问题
  • 批准号:
    2118251
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Harnessing Accurate Bias in Large-Scale Language Models
EAGER:利用大规模语言模型中的准确偏差
  • 批准号:
    2141680
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
  • 批准号:
    2035606
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
  • 批准号:
    2035577
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
  • 批准号:
    2122793
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
  • 批准号:
    1921111
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
  • 批准号:
    1921087
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了