Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator

合作研究:EAGER:QIA:大规模 QAOA 量子模拟器

基本信息

  • 批准号:
    2122793
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop a specialized Quantum Approximate Optimization Algorithm (QAOA) quantum circuit simulator. QAOA is the most studied quantum optimization algorithm and is considered to be the prime candidate for demonstrating quantum advantage. There is a worldwide race underway amongst top quantum information science researchers to find combinatorial optimization problems and their instances that run efficiently and faster on quantum devices rather than on classical computers. One of the critical bottlenecks is to find circuit parameters faster on a classical computer to accelerate variational quantum-classical frameworks. The expected improvements to the developed simulator will dramatically increase the speed of QAOA simulations by at least one order of magnitude and significantly speed up research done on finding optimal QAOA circuit parameters. As a result, it will help the realization of quantum advantage by US scientists in this highly competitive field of science.The technical goal of this project is to carry out computational and algorithmic investigations in various node elimination methods for tensor contraction in the development of a scalable quantum simulator. The plan is to build upon the success of the combinatorial scientific computing community in developing elimination algorithms for such tasks as minimizing the error and complexity in matrix computations and optimizing the time and space complexity in automatic differentiation, and recent developments in treewidth optimization algorithms. Additionally, in this project, emphasis will be placed on scaling up relevant graph algorithms to achieve acceptable time/quality trade-off for large-scale quantum simulators. Algorithmic and software products of this project will include a specialized QAOA quantum circuit open-source simulator equipped with fast optimization algorithms to accelerate tensor contraction methods. A high-quality simulator that scales to sufficiently large circuits is one of the major bottlenecks in discovering applications for demonstrating quantum advantage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目的目标是开发一个专门的量子近似优化算法(QAOA)量子电路模拟器。QAOA是目前研究最多的量子优化算法,被认为是展示量子优势的首选算法。顶级量子信息科学研究人员正在进行一场世界性的竞赛,目的是寻找组合优化问题及其实例,这些问题和实例在量子设备上运行得更高效、更快,而不是在经典计算机上。关键的瓶颈之一是在经典计算机上更快地找到电路参数,以加速变分量子经典框架。对开发的模拟器的预期改进将使QAOA模拟的速度显著提高至少一个数量级,并显著加快寻找最佳QAOA电路参数的研究。因此,它将有助于美国科学家在这个竞争激烈的科学领域实现量子优势。该项目的技术目标是在开发可扩展的量子模拟器时,对张量压缩的各种节点消除方法进行计算和算法研究。该计划将建立在组合科学计算界在开发消除算法方面的成功的基础上,这些算法用于最小化矩阵计算中的错误和复杂性以及优化自动微分中的时间和空间复杂性,以及树宽优化算法的最新发展。此外,在这个项目中,重点将放在扩大相关的图形算法,以实现可接受的时间/质量折衷大规模量子模拟器。该项目的算法和软件产品将包括一个专门的QAOA量子电路开源模拟器,配备快速优化算法,以加速张量收缩方法。一个可扩展到足够大的电路的高质量模拟器是发现展示量子优势的应用程序的主要瓶颈之一。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Safro其他文献

Algebraic Distance on Graphs
图上的代数距离
FAIRLEARN: Configurable and Interpretable Algorithmic Fairness
FAIRLEARN:可配置和可解释的算法公平性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ankit Kulshrestha;Ilya Safro
  • 通讯作者:
    Ilya Safro
Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations
  • DOI:
    10.1007/s11004-021-09944-y
  • 发表时间:
    2021-05-26
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Hayato Ushijima-Mwesigwa;Jeffrey D. Hyman;Aric Hagberg;Ilya Safro;Satish Karra;Carl W. Gable;Matthew R. Sweeney;Gowri Srinivasan
  • 通讯作者:
    Gowri Srinivasan
Randomized heuristics for exploiting Jacobian scarcity
利用雅可比稀缺性的随机启发式
A Measure of the Connection Strengths between Graph Vertices with Applications
图顶点间连接强度的测量及其应用
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Chen;Ilya Safro
  • 通讯作者:
    Ilya Safro

Ilya Safro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Safro', 18)}}的其他基金

RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
  • 批准号:
    2027864
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
  • 批准号:
    2035606
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
  • 批准号:
    2127776
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
  • 批准号:
    1745300
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Feedback-based Network Optimization for Smart Cities
EAGER:基于反馈的智慧城市网络优化
  • 批准号:
    1647361
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Fast and Scalable Multigrid Methods for Hypergraph Partitioning Problems
超图分区问题的快速且可扩展的多重网格方法
  • 批准号:
    1522751
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了