EAGER: SSDIM: Simulated and Synthetic Data for Interdependent Communications and Energy Critical Infrastructures
EAGER:SSDIM:相互依赖的通信和能源关键基础设施的模拟和综合数据
基本信息
- 批准号:1745829
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) project will develop new mathematical foundations and computer-based learning theories for generating a wide range of simulated and fully-synthetic datasets that model interdependent communications and energy infrastructures in urban settings. These enhanced datasets and associated data building tools will provide a large-scale test data related to interdependent critical infrastructures (ICIs). New simulated and synthetic data generation tools will enable increasing the resiliency and flexibility of ICIs, improving their security during extreme weather conditions and other threats. This project will involve students from diverse backgrounds in engineering, computer science and psychology, who will be trained on pertinent research approaches related to the challenges of simulated and synthetic data modeling. The education plan includes a new data-centric course called Methods for Creating Simulated and Synthetic Data, as well as a large-scale involvement of graduate and undergraduate students in big data and smart community research. Broad dissemination is ensured by enabling an open-access repository of datasets created from the results of the funded research, as well as any program codes or related tools used to generate and analyze such data. The open-access testbed is capable of supporting both the research needs of the host institution as well as the requirement of non-proprietary multi-domain open datasets by other users.This project will develop a scientific basis for the generation of simulated and synthetic data on ICIs, such as communication and energy. The objective is to develop models that can accurately reconstruct, simulate, and evaluate a robust theoretical framework of ICI function by leveraging available real-world datasets. This research will lead to several innovations: 1) An advanced Transfer Learning technique that generates simulated data on ICIs using available real-world information, leading to improved characterization of how interdependencies can form or disappear over time; 2) a Hierarchical Bayesian method-based technique for the creation of synthetic data that enables ICIs to optimally manage their shared resources in response to failures from day-to-day operations, natural disasters, or malicious attacks; 3) a Long-/Short-term Memory-based deep learning method for predicting simulated data on human-in-the-loop cognitive modeling of human behavior and the effects of their decision-making in response to unexpected incidents and events involving urban ICIs; and 4) a quality-feedback loop verification and data management approach to fine-tune the simulated and synthetic data by comparing it against available real-world data over a realistic network with a large-scale simulator that integrates ICIs over an urban setting.
EAGER项目将开发新的数学基础和基于计算机的学习理论,用于生成广泛的模拟和完全合成的数据集,这些数据集对城市环境中相互依赖的通信和能源基础设施进行建模。这些增强的数据集和相关的数据构建工具将提供与相互依赖的关键基础设施(ICI)相关的大规模测试数据。新的模拟和合成数据生成工具将能够提高ICI的弹性和灵活性,提高其在极端天气条件和其他威胁下的安全性。该项目将涉及来自工程,计算机科学和心理学不同背景的学生,他们将接受与模拟和合成数据建模挑战相关的相关研究方法的培训。该教育计划包括一个新的以数据为中心的课程,称为创建模拟和合成数据的方法,以及研究生和本科生大规模参与大数据和智能社区研究。广泛传播是通过启用一个开放获取的数据库来确保的,这些数据库是根据资助研究的结果创建的,以及用于生成和分析这些数据的任何程序代码或相关工具。该开放获取测试平台既能满足主办机构的研究需求,也能满足其他用户对非专有多领域开放数据集的需求。该项目将为生成通信和能源等信息基础设施的模拟和合成数据奠定科学基础。我们的目标是开发模型,可以准确地重建,模拟和评估ICI功能的强大的理论框架,利用现有的现实世界的数据集。这项研究将带来几项创新:1)一种先进的迁移学习技术,使用可用的真实世界信息生成ICI的模拟数据,从而改善相互依赖性如何随着时间的推移形成或消失的特征; 2)基于分层贝叶斯方法的技术,用于创建合成数据,使ICI能够优化管理其共享资源,以应对日常故障,3)基于长期/短期记忆的深度学习方法,用于预测人类行为的人在回路认知建模的模拟数据,以及他们在应对涉及城市ICI的突发事件和事件时的决策效果;以及4)质量反馈回路验证和数据管理方法,通过将模拟和合成数据与具有大的规模模拟器,集成了城市环境中的ICI。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Survey on Cybersecurity Challenges, Detection, and Mitigation Techniques for the Smart Grid
- DOI:10.3390/en14185894
- 发表时间:2021-09
- 期刊:
- 影响因子:3.2
- 作者:S. Tufail;Imtiaz Parvez;Shanzeh Batool;A. Sarwat
- 通讯作者:S. Tufail;Imtiaz Parvez;Shanzeh Batool;A. Sarwat
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arif Sarwat其他文献
Efficient Reinforcement Learning for Real-Time Hardware-Based Energy System Experiments
用于基于硬件的实时能源系统实验的高效强化学习
- DOI:
10.1609/aaaiss.v2i1.27663 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexander Stevenson;M. Panwar;Rob Hovsapian;Arif Sarwat - 通讯作者:
Arif Sarwat
Data-driven scheduling of a grid-connected university campus battery energy storage system considering variable weather and energy pricing
- DOI:
10.1016/j.egyr.2024.10.063 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Alexander Stevenson;Hugo Riggs;Arif Sarwat - 通讯作者:
Arif Sarwat
Arif Sarwat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arif Sarwat', 18)}}的其他基金
CAREER: Cyber Physical Solution for High Penetration Renewables in Smart Grid
职业:智能电网中高渗透可再生能源的网络物理解决方案
- 批准号:
1553494 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRISP Type 2: Collaborative Research: Towards Resilient Smart Cities
CRISP 类型 2:协作研究:迈向弹性智能城市
- 批准号:
1541108 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Towards Secure Networked Cyber-Physical Systems: A Theoretic Framework with Bounded Rationality
CPS:协同:协作研究:迈向安全的网络信息物理系统:具有有限理性的理论框架
- 批准号:
1446570 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: RIPS Type 2: Vulnerability Assessment and Resilient Design of Interdependent Infrastructures
合作研究:RIPS 类型 2:相互依赖基础设施的漏洞评估和弹性设计
- 批准号:
1441223 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
2310638 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
2114098 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1927791 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
- 批准号:
1745300 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
1745375 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
1745385 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1745207 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data Generation for Interdependent Natural Gas and Electrical Power Systems Based on Graph Theory and Machine Learning
EAGER:SSDIM:基于图论和机器学习的相互依赖的天然气和电力系统的模拟和综合数据生成
- 批准号:
1745451 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Data Simulation to Support Interdependence Modeling in Emergency Response and Multimodal Transportation Networks
EAGER:SSDIM:支持应急响应和多式联运网络中相互依赖建模的数据模拟
- 批准号:
1745353 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Leveraging Point Processes and Mean Field Games Theory for Simulating Data on Interdependent Critical Infrastructures
EAGER:SSDIM:利用点过程和平均场博弈论来模拟相互依赖的关键基础设施上的数据
- 批准号:
1745382 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant