EAGER: SSDIM: Leveraging Point Processes and Mean Field Games Theory for Simulating Data on Interdependent Critical Infrastructures
EAGER:SSDIM:利用点过程和平均场博弈论来模拟相互依赖的关键基础设施上的数据
基本信息
- 批准号:1745382
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) project addresses modeling and inference problems in order to improve understanding of interactions and interdependencies within interdependent critical infrastructures (ICIs). The key application areas are financial services, healthcare systems, communication technologies. This work will result in novel machine learning methodologies to generate data on infrastructure interdependencies. Findings will be widely disseminated in scholarly fora, with accompanying efforts in graduate-level training. Data and computer software produced in this project will be made publicly available via online data repositories. This project includes the development of new generative models and algorithms to simulate and synthesize extensive interdependent CI data for comprehensive study. This research focuses on modeling and simulation of interdependent critical infrastructure (ICI) data by leveraging point process models and mean field games (MFG) theory. In particular, multivariate Hawkes processes are used to model interactions and interdependencies of behaviors in a variety of domains. Additionally, an MFG framework is employed to capture the implicit optimization strategies that individuals perform, along with the cost functions that drive those strategies. This work addresses both mechanistic and human aspects of the ICIs, captured in point process models and their evolution. This work advances the theory and computational methods for generative methods and algorithms for quantitative understanding and rigorous analysis of ICIs.
这个探索性研究(EAGER)项目的早期概念资助解决了建模和推理问题,以提高对相互依赖的关键基础设施(ici)中的相互作用和相互依赖性的理解。关键的应用领域是金融服务、医疗保健系统、通信技术。这项工作将产生新的机器学习方法来生成基础设施相互依赖关系的数据。研究结果将在学术论坛上广泛传播,同时进行研究生培训。在这个项目中产生的数据和计算机软件将通过在线数据存储库公开提供。该项目包括开发新的生成模型和算法来模拟和综合广泛的相互依存的CI数据,以进行全面研究。本研究的重点是利用点过程模型和平均场博弈(MFG)理论对相互依赖的关键基础设施(ICI)数据进行建模和仿真。特别地,多元Hawkes过程被用来模拟各种领域中行为的相互作用和相互依赖。此外,MFG框架用于捕获个人执行的隐式优化策略,以及驱动这些策略的成本函数。这项工作解决了在点过程模型及其演变中捕获的ici的机制和人的方面。这项工作为ici的定量理解和严格分析的生成方法和算法提供了理论和计算方法。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Conditional Generative Models for Temporal Point Processes
- DOI:10.1609/aaai.v32i1.12072
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Shuai Xiao;Hongteng Xu;Junchi Yan;Mehrdad Farajtabar;Xiaokang Yang;Le Song;H. Zha
- 通讯作者:Shuai Xiao;Hongteng Xu;Junchi Yan;Mehrdad Farajtabar;Xiaokang Yang;Le Song;H. Zha
Learning to Match via Inverse Optimal Transport
- DOI:
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Ruilin Li;X. Ye;Haomin Zhou;H. Zha
- 通讯作者:Ruilin Li;X. Ye;Haomin Zhou;H. Zha
On Scalable and Efficient Computation of Large Scale Optimal Transport
- DOI:
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Yujia Xie;Minshuo Chen;Haoming Jiang;T. Zhao;H. Zha
- 通讯作者:Yujia Xie;Minshuo Chen;Haoming Jiang;T. Zhao;H. Zha
Network Diffusions via Neural Mean-Field Dynamics
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Shushan He;H. Zha;X. Ye
- 通讯作者:Shushan He;H. Zha;X. Ye
Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization
弱光滑凸约束优化中水平束方法的加速技术
- DOI:10.1007/s10589-020-00208-9
- 发表时间:2020
- 期刊:
- 影响因子:2.2
- 作者:Chen, Yunmei;Ye, Xiaojing;Zhang, Wei
- 通讯作者:Zhang, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duen Horng Chau其他文献
TgrApp: Anomaly Detection and Visualization of Large-Scale Call Graphs
TgrApp:大规模调用图的异常检测和可视化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Cazzolato;Saranya Vijayakumar;Xinyi Zheng;Namyong Park;Meng;Duen Horng Chau;Pedro Fidalgo;Bruno Lages;A. Traina;C. Faloutsos - 通讯作者:
C. Faloutsos
Visual Exploration of Literature with Argo Scholar
与Argo Scholar一起进行文学视觉探索
- DOI:
10.1145/3511808.3557177 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
K. Li;Haoyang Yang;Evan Montoya;Anish Upadhayay;Zhiyan Zhou;Jon Saad;Duen Horng Chau - 通讯作者:
Duen Horng Chau
Mining large graphs: Algorithms, inference, and discoveries
挖掘大图:算法、推理和发现
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
U. Kang;Duen Horng Chau;C. Faloutsos - 通讯作者:
C. Faloutsos
STEPS: A Spatio-temporal Electric Power Systems Visualization
STEPS:时空电力系统可视化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Robert S. Pienta;Leilei Xiong;S. Grijalva;Duen Horng Chau;Minsuk Kahng - 通讯作者:
Minsuk Kahng
TopicScape: Semantic Navigation of Document Collections
TopicScape:文档集合的语义导航
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jacob Eisenstein;Duen Horng Chau;A. Kittur;E. Xing - 通讯作者:
E. Xing
Duen Horng Chau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duen Horng Chau', 18)}}的其他基金
SaTC: CORE: Medium: Understanding and Fortifying Machine Learning Based Security Analytics
SaTC:核心:媒介:理解和强化基于机器学习的安全分析
- 批准号:
1704701 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
EAGER: Asynchronous Event Models for State-Topology Co-Evolution of Temporal Networks
EAGER:时态网络状态拓扑协同演化的异步事件模型
- 批准号:
1639792 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Human-Computer Graph Exploration and Tele-Discovery
III:媒介:协作研究:人机图探索与远程发现
- 批准号:
1563816 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
TWC: Small: Collaborative: Cracking Down Online Deception Ecosystems
TWC:小型:协作:打击在线欺骗生态系统
- 批准号:
1526254 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Scaling Up Machine Learning with Virtual Memory
EAGER:利用虚拟内存扩展机器学习
- 批准号:
1551614 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
2310638 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
2114098 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1927791 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
- 批准号:
1745300 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
1745375 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
1745385 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1745207 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data Generation for Interdependent Natural Gas and Electrical Power Systems Based on Graph Theory and Machine Learning
EAGER:SSDIM:基于图论和机器学习的相互依赖的天然气和电力系统的模拟和综合数据生成
- 批准号:
1745451 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data for Interdependent Communications and Energy Critical Infrastructures
EAGER:SSDIM:相互依赖的通信和能源关键基础设施的模拟和综合数据
- 批准号:
1745829 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Data Simulation to Support Interdependence Modeling in Emergency Response and Multimodal Transportation Networks
EAGER:SSDIM:支持应急响应和多式联运网络中相互依赖建模的数据模拟
- 批准号:
1745353 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




