EAGER: SSDIM: Simulated and Synthetic Data Generation for Interdependent Natural Gas and Electrical Power Systems Based on Graph Theory and Machine Learning
EAGER:SSDIM:基于图论和机器学习的相互依赖的天然气和电力系统的模拟和综合数据生成
基本信息
- 批准号:1745451
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural gas and electric power systems have become the backbone of the U.S. energy infrastructure. This EArly-concept Grant for Exploratory Research (EAGER) project will investigate practical data-based approaches for producing simulated and synthetic datasets that faithfully represent the interdependence between the two critical infrastructure systems from mechanistic and human aspects. The project contributes to the grand national challenge of modernizing energy systems by laying the data foundation for future research in interdependent critical energy infrastructures. The research results will lead to publications as well as multi-disciplinary training opportunities that integrate data analysis and energy engineering for graduate and undergraduate students. By forging strategic alliances with the utilities in the Midwest and national laboratories, webinars on natural gas and power network data analysis will be given to a broad array of engineers and researchers on the results of this work. The project will pioneer data-based approaches to understand and model the interdependence between natural gas and power networks. The interactive data generation method provides high-fidelity datasets with different spatial-temporal granularities and operation conditions. In particular, mechanistic principles and human impacts inherent in gas-electric systems are identified from practical data using graph-based and learning-based approaches. These generated datasets will be validated using practical data, and be available online through a project website, together with a list of use cases that leverage the data and existing modeling approaches to advance the understanding of gas/power network interdependence in terms of strong/weak coupling effects, economic operations, cascading outages, etc. The project promotes an interdisciplinary effort in science and technology from data analysis, graph theories, complex networks, as well as power and natural gas engineering to provide fundamental knowledge about synthetic data generation for critical interdependent infrastructures.
天然气和电力系统已成为美国能源基础设施的支柱。这个探索性研究(EAGER)项目的早期概念资助将研究基于数据的实用方法,用于生成模拟和合成数据集,这些数据集忠实地代表了两个关键基础设施系统从机械和人类方面的相互依存关系。该项目通过为未来相互依存的关键能源基础设施的研究奠定数据基础,为实现国家能源系统现代化的重大挑战作出贡献。研究成果将发表,并为研究生和本科生提供整合数据分析和能源工程的多学科培训机会。通过与中西部公用事业公司和国家实验室建立战略联盟,天然气和电力网络数据分析的网络研讨会将向广泛的工程师和研究人员提供这项工作的结果。该项目将率先采用基于数据的方法来理解和模拟天然气和电网之间的相互依存关系。交互式数据生成方法提供了具有不同时空粒度和操作条件的高保真数据集。特别是,利用基于图和基于学习的方法,从实际数据中确定了气电系统固有的机械原理和人为影响。这些生成的数据集将使用实际数据进行验证,并通过项目网站在线提供,以及利用数据和现有建模方法的用例列表,以提高对天然气/电力网络在强/弱耦合效应、经济运行、级联中断等方面的相互依赖性的理解。该项目促进了数据分析、图论、复杂网络以及电力和天然气工程等科学技术的跨学科努力,为关键的相互依存基础设施提供有关合成数据生成的基本知识。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Short-term transmission line maintenance scheduling with wind energy integration
- DOI:10.1109/pesgm.2017.8274097
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Chong Wang;Zhaoyu Wang
- 通讯作者:Chong Wang;Zhaoyu Wang
Maintenance Scheduling of Integrated Electric and Natural Gas Grids with Wind Energy Integration
- DOI:10.1109/pesgm.2018.8586553
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Chong Wang;Zhaoyu Wang;Kai Zhou;Shanshan Ma
- 通讯作者:Chong Wang;Zhaoyu Wang;Kai Zhou;Shanshan Ma
A Time-Series Distribution Test System Based on Real Utility Data
基于真实公用事业数据的时间序列分布测试系统
- DOI:10.1109/naps46351.2019.8999982
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bu, Fankun;Yuan, Yuxuan;Wang, Zhaoyu;Dehghanpour, Kaveh;Kimber, Anne
- 通讯作者:Kimber, Anne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaoyu Wang其他文献
Atomically Thin, Ionic–Covalent Organic Nanosheets for Stable, High‐Performance Carbon Dioxide Electroreduction
原子薄的离子共价有机纳米片,用于稳定、高性能二氧化碳电还原
- DOI:
10.1002/adma.202110496 - 发表时间:
2022-08 - 期刊:
- 影响因子:29.4
- 作者:
Yun Song;Jun‐Jie Zhang;Yubing Dou;Zhaohua Zhu;Jianjun Su;Libei Huang;Weihua Guo;Xiaohu Cao;Le Cheng;Zonglong Zhu;Zhenhua Zhang;Xiaoyan Zhong;Dengtao Yang;Zhaoyu Wang;Ben Zhong Tang;Boris I. Yakobson;Ruquan Ye - 通讯作者:
Ruquan Ye
The effect and mechanism of closed double equal channel angular pressing deformation on He+ irradiation damage of low activation steel
闭式双等通道角挤压变形对低活化钢He辐照损伤的影响及机理
- DOI:
10.1016/j.fusengdes.2022.113358 - 发表时间:
2023-02 - 期刊:
- 影响因子:1.7
- 作者:
Ping Li;Jiren Dai;Lusheng Wang;Yufeng Zhou;Zhaoyu Wang;Kemin Xue - 通讯作者:
Kemin Xue
Experimental Study on Thermal Conductivity of Sand Solidified by Microbially Induced Calcium Carbonate Precipitation
微生物诱导碳酸钙沉淀固化砂导热系数实验研究
- DOI:
10.1088/1755-1315/304/5/052069 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jinhua Ding;Zhaoyu Wang;N. Zhang;P. Jiang;M. Peng;Y. Jin;Qi Li - 通讯作者:
Qi Li
Distribution Network Outage Data Analysis and Repair Time Prediction Using Deep Learning
使用深度学习进行配电网停电数据分析和修复时间预测
- DOI:
10.1109/pmaps.2018.8440354 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anmar I. Arif;Zhaoyu Wang - 通讯作者:
Zhaoyu Wang
A Linear Solution Method of Generalized Robust Chance Constrained Real-Time Dispatch
广义鲁棒机会约束实时调度的线性求解方法
- DOI:
10.1109/tpwrs.2018.2865184 - 发表时间:
2018-01 - 期刊:
- 影响因子:6.6
- 作者:
Anping Zhou;Ming Yang;Zhaoyu Wang;Peng Li - 通讯作者:
Peng Li
Zhaoyu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaoyu Wang', 18)}}的其他基金
CAREER: Learning Smart Meter Data to Enhance Distribution Grid Modeling and Observability
职业:学习智能电表数据以增强配电网建模和可观测性
- 批准号:
2042314 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Data-Driven Voltage VAR Optimization Enabling Extreme Integration of Distributed Solar Energy
数据驱动的电压无功优化实现分布式太阳能的极致集成
- 批准号:
1929975 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Data-driven modeling, monitoring and mitigation of cascading outages in transmission and distribution systems
输配电系统级联停电的数据驱动建模、监控和缓解
- 批准号:
1609080 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
2310638 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
2114098 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1927791 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
- 批准号:
1745300 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Generating Synthetic Data on Interdependent Food, Energy, and Transportation Networks via Stochastic, Bi-level Optimization
EAGER:SSDIM:通过随机双层优化生成相互依赖的食品、能源和运输网络的综合数据
- 批准号:
1745375 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
- 批准号:
1745385 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Ensembles of Interdependent Critical Infrastructure Networks
EAGER:SSDIM:相互依赖的关键基础设施网络的集合
- 批准号:
1745207 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data for Interdependent Communications and Energy Critical Infrastructures
EAGER:SSDIM:相互依赖的通信和能源关键基础设施的模拟和综合数据
- 批准号:
1745829 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Data Simulation to Support Interdependence Modeling in Emergency Response and Multimodal Transportation Networks
EAGER:SSDIM:支持应急响应和多式联运网络中相互依赖建模的数据模拟
- 批准号:
1745353 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSDIM: Leveraging Point Processes and Mean Field Games Theory for Simulating Data on Interdependent Critical Infrastructures
EAGER:SSDIM:利用点过程和平均场博弈论来模拟相互依赖的关键基础设施上的数据
- 批准号:
1745382 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant