Conference Proposal - Structure of 3-manifold Groups

会议提案 - 3流形组的结构

基本信息

  • 批准号:
    1747833
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The conference, "Structure of 3-manifold groups" will be held in Marseille, Luminy (France) at the Centre International de Rencontres Mathematiques (CIRM) from February 26 to March 2, 2018. The organizers expect that the meeting will have about 90 participants. The award funds participation of US based mathematicians in this event. The topics covered at the conference are of high current interest with difficult outstanding problems. There have recently been new techniques developed regarding this family of problems and related conjectures regarding the structure of 3-manifold groups. The organizers expect that bringing mathematicians together from different areas with different points of view regarding these topics will serve mathematical progress. This conference is part of a semester whose aim is to foster international collaboration, particularly between the United States and France. There is time allowed for interaction and collaboration, and the mix of senior and junior mathematicians should be very productive.The conference will focus on determining which groups are the fundamental groups of 3-manifolds. Understanding which groups are 3-manifold groups is a very old problem, but there are new ways of thinking about groups that allow to make progress in certain cases. In particular, much progress has been made in the field of relatively hyperbolic groups, and specific classes of hyperbolic groups, such as free-by-cyclic groups. Specifically, the conference will cover topics about Poincare duality groups, when certain classes of groups are the fundamental groups of 3-manifolds, pro-finite completions of groups, surface subgroups of groups, and decompositions of groups analogous to decompositions of 3-manifolds. The main goal is that specific results will be obtained by bringing individuals together. There is a continuously evolving website for the meeting at https://walsh-paoluzzi.weebly.com/conference.html. In particular, interested participants can pre-register at that site.
会议,“结构的3-流形组”将在马赛,Luminy(法国)在国际数学会议中心(CIRM)从2月26日至3月2日,2018年。组织者预计会议将有大约90名与会者。该奖项资助美国数学家参与这项活动。会议涵盖的主题具有很高的现实意义,但存在一些悬而未决的困难问题。最近有新的技术开发有关这一系列的问题和相关的programmures的结构的3-流形组。组织者希望将来自不同领域的数学家聚集在一起,对这些主题有不同的观点,这将有助于数学的进步。本次会议是一个学期的一部分,其目的是促进国际合作,特别是美国和法国之间的合作。有时间允许的互动和合作,和混合的高级和初级数学家应该是非常富有成效的.会议将集中在确定哪些群体是基本群体的3-流形.理解哪些群是3-流形群是一个非常古老的问题,但是有一些新的方法可以在某些情况下取得进展。 特别是,在相对双曲群和特定的双曲群类,如自由循环群领域已经取得了很大的进展。具体来说,会议将涵盖有关庞加莱对偶群的主题,当某些类别的群体是基本群体的3-流形,pro-finite完成的群体,表面子群的群体,和分解的群体类似于分解的3-流形。 其主要目标是通过将个人聚集在一起来取得具体成果。 会议的网站https://walsh-paoluzzi.weebly.com/conference.html不断更新。特别是,感兴趣的参与者可以在该网站预先登记。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Genevieve Walsh其他文献

Great Circle Links in the Three-Sphere
  • DOI:
  • 发表时间:
    2003-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Genevieve Walsh
  • 通讯作者:
    Genevieve Walsh

Genevieve Walsh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Genevieve Walsh', 18)}}的其他基金

Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
  • 批准号:
    2240567
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Geometry of Subgroups
子群的几何
  • 批准号:
    2005353
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
  • 批准号:
    1709964
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
  • 批准号:
    1207644
  • 财政年份:
    2012
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Symmetry and Commensurability
对称性和可通约性
  • 批准号:
    0805908
  • 财政年份:
    2008
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant

相似海外基金

Proposal of electronic holography using phase mosaic structure
使用相位镶嵌结构的电子全息术的提案
  • 批准号:
    23K17759
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Incorporating Quantitative Analysis and Digital Database Use in Structure and Tectonics Research and Teaching: Proposal for a Summer School
将定量分析和数字数据库的使用纳入结构和构造研究与教学:关于暑期学校的建议
  • 批准号:
    2222610
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Proposal of integratable two dimensional tunnel FET structure and demonstration of its ultra-low power operation
可集成二维隧道FET结构的提出及其超低功耗操作的演示
  • 批准号:
    22H00206
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of anti-corrosive technology for combined deterioration of RC structure and proposal of its maintenance
RC结构复合劣化防腐技术开发及维护建议
  • 批准号:
    20H02224
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: CRCNS Research Proposal: Presynaptic structure-function relationships that control AP waveforms, calcium ion, entry, and transmitter release at NMJs
合作研究:CRCNS 研究提案:控制 NMJ 的 AP 波形、钙离子、进入和递质释放的突触前结构功能关系
  • 批准号:
    2011616
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CRCNS Research Proposal: Presynaptic structure-function relationships that control AP waveforms, calcium ion, entry, and transmitter release at NMJs
合作研究:CRCNS 研究提案:控制 NMJ 的 AP 波形、钙离子、进入和递质释放的突触前结构功能关系
  • 批准号:
    2011645
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
RAPID Collaborative Proposal: High-resolution structure determination of Coronavirus ligands by high-throughput WAXS
RAPID 合作提案:通过高通量 WAXS 测定冠状病毒配体的高分辨率结构
  • 批准号:
    2030052
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CRCNS Research Proposal: Presynaptic structure-function relationships that control AP waveforms, calcium ion, entry, and transmitter release at NMJs
合作研究:CRCNS 研究提案:控制 NMJ 的 AP 波形、钙离子、进入和递质释放的突触前结构功能关系
  • 批准号:
    2011630
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CRCNS Research Proposal: Presynaptic structure-function relationships that control AP waveforms, calcium ion, entry, and transmitter release at NMJs
合作研究:CRCNS 研究提案:控制 NMJ 的 AP 波形、钙离子、进入和递质释放的突触前结构功能关系
  • 批准号:
    2011648
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
New proposal and development of specific heat capacity and thermal conductivity measurement method using the spherical structure
使用球形结构的比热容和导热系数测量方法的新提议和发展
  • 批准号:
    19K04228
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了