The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
基本信息
- 批准号:1207644
- 负责人:
- 金额:$ 12.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Under this grant, the PI will work on problems regarding the geometry and topology of groups generated by involutions. The first problem involves a new geometric criterion for when a Coxeter group is a Kleinian group. Specifically, if the defining graph of a right-angled Coxeter group can be realized as the 1-skeleton of an acute triangulation of the 2-sphere, is the Coxeter group hyperbolic? This relates the techniques of geometric group theory and classical 3-dimensional hyperbolic geometry to combinatorial problems concerning triangulations. As part of this study, the PI will investigate the moduli space of an acute triangulation of the 2-sphere. In particular, is this space connected? A second question asks when a group generated by reflections in hyperbolic 3-space contains a knot group. This is deeply related to understanding commensurability of knot complements. More broadly, the PI seeks to address the conjecture that there are at most three hyperbolic knot complements in any given commensurability class. Boileau, Boyer, Cebanu, and the PI have made significant progress on the conjecture in recent work, and this project aims to address the remaining case. In a third project, the PI seeks a CAT(0) space for the group of outer automorphisms of the free product of four copies of the integers mod 2. This group of outer automorphisms is particularly pleasing and related to the proposal as it is generated by involutions.Groups generated by involutions have long been guiding examples in furthering the understanding of the geometry of groups. They are inherently geometric and relevant to the modern theory of orbifolds. These groups have been studied in various ways by Coxeter, Thurston, Davis, and Moussong, as well as by many other celebrated mathematicians, and they continue to inform current research. Imposing some condition, such as the presence of a reflection, allows one to gain traction on a difficult problem and eventually see the whole picture. The projects proposed here have potential impact in other fields. For example, the study of triangulations, particularly acute triangulations, is important in computer-aided design and scientific computing.
根据这项补助金,PI将致力于对合所产生的几何和拓扑群的问题。 第一个问题涉及一个新的几何准则时,Coxeter组是Kleinian组。具体地说,如果直角Coxeter群的定义图可以实现为2-球面的锐角三角剖分的1-骨架,那么Coxeter群是双曲的吗? 这涉及到几何群论和经典的三维双曲几何的技术组合问题有关三角剖分。作为本研究的一部分,PI将研究2-球面的锐角三角剖分的模空间。 特别是,这个空间是连通的吗? 第二个问题是,在双曲3-空间中由反射生成的群何时包含一个纽结群。 这与理解纽结补语的可互换性密切相关。更广泛地说,PI试图解决猜想,即在任何给定的可并行性类中最多有三个双曲纽结补。 Boileau,Boyer,Cebanu和PI在最近的工作中对该猜想取得了重大进展,该项目旨在解决剩余的情况。 在第三个项目中,PI为整数模2的四个副本的自由积的外自同构群寻找CAT(0)空间。 这组外自同构是特别令人愉快的,并与建议有关,因为它是由对合生成的。对合生成的群长期以来一直是进一步理解群几何的指导性例子。 它们本质上是几何的,与现代的轨道褶皱理论有关。这些群体已经研究了各种方式的考克斯特,瑟斯顿,戴维斯,和Moussong,以及许多其他著名的数学家,他们继续通知目前的研究。强加一些条件,比如反射的存在,可以让一个人在一个困难的问题上获得牵引力,并最终看到整个画面。 这里提出的项目在其他领域有潜在的影响。 例如,三角剖分的研究,特别是锐角三角剖分,在计算机辅助设计和科学计算中很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Genevieve Walsh其他文献
Great Circle Links in the Three-Sphere
- DOI:
- 发表时间:
2003-08 - 期刊:
- 影响因子:0
- 作者:
Genevieve Walsh - 通讯作者:
Genevieve Walsh
Genevieve Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Genevieve Walsh', 18)}}的其他基金
Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
- 批准号:
2240567 - 财政年份:2023
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
- 批准号:
1747833 - 财政年份:2018
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
- 批准号:
1709964 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 12.92万 - 项目类别:
Continuing Grant
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2020
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2019
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2018
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
Geometry of discrete groups and its applications to 3-dimensional topology
离散群的几何及其在三维拓扑中的应用
- 批准号:
17H02843 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
- 批准号:
1748107 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2016
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual