Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
基本信息
- 批准号:1709964
- 负责人:
- 金额:$ 19.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The concept of a group appears in several areas of pure and applied mathematics. Often a group has a topological space, its "boundary at infinity", that gives us some information about the group. The study of this brings the fields of topology, algebra, and dynamics into play. This project addresses the broad question of how much the boundary of a group determines the group. The principal investigator continually seeks to spread mathematical knowledge to a wide audience, including under-represented groups in mathematics and people working in industry and technology. This is done through speaking at and organizing conferences in a wide variety of venues aimed at wide audiences, and encouraging people in these groups (including industry) to attend her classes. In addition, all of the PI's mathematical results and findings are freely available to the public. The project addresses important and fundamental problems involving which hyperbolic or relatively hyperbolic groups can have certain boundaries. For one part of the project the principal investigator plans to extend known results about hyperbolic groups with planar or two-sphere boundaries to the relatively hyperbolic case, strengthening the connection with Kleinian groups and the fundamental groups of 3-manifolds. The proof methods sometimes are similar to the case of hyperbolic groups but often require different techniques. For the other part of the project she is exploring the wealth of planar boundaries than can occur as the complement of round disks in the 2-sphere.
群的概念出现在纯数学和应用数学的几个领域。通常一个群有一个拓扑空间,它的“无穷大边界”,这给了我们一些关于这个群的信息。对这一点的研究涉及到拓扑学、代数学和动力学领域。这个项目解决了一个群体的边界在多大程度上决定了这个群体的广泛问题。 首席研究员不断寻求传播数学知识,以广泛的受众,包括在数学和在工业和技术工作的人代表性不足的群体。 这是通过在各种各样的场所演讲和组织会议来实现的,目的是广泛的受众,并鼓励这些群体(包括行业)的人参加她的课程。 此外,PI的所有数学结果和发现都免费向公众提供。该项目解决了重要的和基本的问题,涉及双曲或相对双曲群可以有一定的边界。对于该项目的一部分,首席研究员计划将已知的关于双曲群的结果与平面或两个球边界扩展到相对双曲的情况,加强与Kleinian群和3-流形的基本群的联系。 证明方法有时类似于双曲群的情况,但通常需要不同的技术。对于该项目的另一部分,她正在探索丰富的平面边界,而不是作为2球中圆盘的补充。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On groups with $S^2$ Bowditch boundary
在具有 $S^2$ Bowditch 边界的群上
- DOI:10.4171/ggd/563
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Tshishiku, Bena;Walsh, Genevieve
- 通讯作者:Walsh, Genevieve
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Genevieve Walsh其他文献
Great Circle Links in the Three-Sphere
- DOI:
- 发表时间:
2003-08 - 期刊:
- 影响因子:0
- 作者:
Genevieve Walsh - 通讯作者:
Genevieve Walsh
Genevieve Walsh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Genevieve Walsh', 18)}}的其他基金
Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
- 批准号:
2240567 - 财政年份:2023
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
- 批准号:
1747833 - 财政年份:2018
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
The Geometry and Topology of Groups Generated by Involutions
卷积生成群的几何和拓扑
- 批准号:
1207644 - 财政年份:2012
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
相似海外基金
Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
- 批准号:
2400090 - 财政年份:2024
- 资助金额:
$ 19.57万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 19.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 19.57万 - 项目类别:
Discovery Projects
RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
- 批准号:
2350079 - 财政年份:2024
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
- 批准号:
2309084 - 财政年份:2023
- 资助金额:
$ 19.57万 - 项目类别:
Continuing Grant
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 19.57万 - 项目类别:
Standard Grant
C*-algebras Associated to Minimal and Hyperbolic Dynamical Systems
与最小和双曲动力系统相关的 C* 代数
- 批准号:
2247424 - 财政年份:2023
- 资助金额:
$ 19.57万 - 项目类别:
Continuing Grant














{{item.name}}会员




