Database of Dopants and Defects in 2D Materials

二维材料中的掺杂剂和缺陷数据库

基本信息

  • 批准号:
    1748464
  • 负责人:
  • 金额:
    $ 16.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis EAGER award supports computational research on two-dimensional materials and the development of a 2D materials data resource that will be made available through the 2-Dimensional Crystal Consortium (2DCC) Materials Innovation Platform at Pennsylvania State University. Graphene is perhaps the most famous of the 2D materials being a one-atom thick mesh of hexagonal "chicken wire" with a carbon atom at each corner. Graphene has exotic electronic properties, including electrons that behave as though they traveled at the speed of light and an ability to conduct electricity some 1,000,000 times better than copper. Other 2D materials that contain atomically thin layers have been developed. These are the focus of this research project and include transition-metal dichalcogenides. A transition-metal dichalcogenide contains a metal atom from the transition metal columns of the periodic table of elements, like tungsten, or molybdenum, and two chalcogen atoms like sulfur or selenium in the primitive unit that upon replication and translation to fill space defines its structure. Transition-metal dichalcogenides differ from graphene in that their electronic properties have some features akin to silicon, which for example is a semiconductor whereas graphene is a semimetal. They also have a host of interesting and more exotic electronic properties. These properties taken together for transition-metal dichalcogenides and related compounds make them promising candidates for the discovery of fundamentally new physical effects and new electronic and optical device technologies, and the subject of much research. The PI will modify software that he has developed for the rapid calculation of the properties of many materials in parallel to enable calculations for 2D materials. Using this software, high quality calculations will be performed for the properties of 2D materials for which the arrangement of the constituent atoms deviates from the structure of a perfect materials because of additional impurity atoms, missing atoms, or other defects in the structural atomic arrangement. This information will be collected and served in a database that is accessible to the broader community, particularly to researchers that use the 2DCC Materials Innovation Platform. Understanding the role of defects and impurities that change the concentration of charged particles that can carry current and otherwise alter the properties of bulk silicon was important in the development of the transistor. Ready access to the data provided under this award may have a similar transformative effect for 2D materials in new fundamental science discoveries and in the invention of new electronic or optoelectronic devices. This project in conjunction with 2DCC would address in a timely way, the growing needs of the community for information on the role defects, dopants, and impurities play in 2D materials to help guide experimental and theoretical efforts. Software, documentation, and data created during the project could be applied in other contexts and will be made freely available to the broader community as part of the materials research community cyberinfrastructure. Data will be made available through the MaterialsWeb database. The project will contribute to the training of the next generation of computational researchers to enable the development of future cyberinfrastructure. Collaboration with researchers in Germany will contribute to the education of the students participating in this project.TECHNICAL SUMMARYThis EAGER award supports computational research on two-dimensional materials and cyberinfrastructure development to be made available through 2-Dimensional Crystal Consortium (2DCC) Materials Innovation Platform at Pennsylvania State University. Progress in the synthesis and application of 2D materials as pursued by the 2DCC requires understanding how dopants and defects control the carrier concentration, character, and mobility of 2D materials. Just like in bulk semiconductors, dopants and defects in 2D materials are frequently charged. Understanding their formation energies and charge transition levels is crucial for the design of novel 2D-materials-based electronic and spintronic devices. Developing a database of the properties of defects and dopants in 2D materials has the potential to revolutionize the design of 2D electronic devices, the way analogous data did for bulk semiconductors. Density-functional theory employing accurate hybrid exchange-correlation functionals provides a tool that can predict formation energies and charge transition levels to an accuracy of 0.1 - 0.2 eV, sufficient for electronic device design. However, charged defects in single-layer materials challenge conventional computational approaches such as density-functional theory calculations using plane-wave approaches and lead to the divergence of the energy with vacuum spacing. A correction scheme that employs a generalized dipole approach and restores the appropriate electrostatic boundary conditions for charged 2D materials will be coupled in to the PI's Python-based high-throughput framework MPInterfaces. This will enable the rapid development of the database of defect and dopant properties for widely-used 2D materials, such as graphene, phosphorene, metal dichalcogenides, and monochalcogenides. This approach will then be applied to materials of interest to users of the 2DCC and then to the complete MaterialsWeb database. The results will be made freely available through our MaterialsWeb database.This project in conjunction with 2DCC would address in a timely way, the growing need of the community for information on the role defects, dopants, and impurities play in 2D materials to help guide experimental and theoretical efforts. Software, documentation, and data created during the project could be applied in other contexts and will be made freely available to the broader community as part of the materials research community cyberinfrastructure. Data will be made available through the MaterialsWeb database. The project will contribute to the training of the next generation of computational researchers to enable the development of future cyberinfrastructure. Collaboration with researchers in Germany will contribute to the education of the students participating in this project.
非技术摘要该 EAGER 奖项支持二维材料的计算研究和二维材料数据资源的开发,该资源将通过宾夕法尼亚州立大学的二维晶体联盟 (2DCC) 材料创新平台提供。石墨烯可能是最著名的二维材料,它是一种单原子厚的六边形“鸡丝”网格,每个角都有一个碳原子。石墨烯具有奇特的电子特性,包括电子的行为就像以光速移动一样,并且导电能力比铜强约 1,000,000 倍。其他含有原子薄层的二维材料也已开发出来。这些是该研究项目的重点,包括过渡金属二硫属化物。过渡金属二硫属化物在元素周期表的过渡金属列中包含一个金属原子(如钨或钼),以及两个硫族原子(如硫或硒),在基本单元中通过复制和平移填充空间来定义其结构。 过渡金属二硫属化物与石墨烯的不同之处在于它们的电子特性具有一些类似于硅的特征,例如硅是半导体,而石墨烯是半金属。它们还具有许多有趣且更奇特的电子特性。过渡金属二硫属化物和相关化合物的这些特性使它们成为发现全新物理效应和新电子和光学器件技术的有希望的候选者,并且成为许多研究的主题。 PI 将修改他开发的用于并行快速计算许多材料属性的软件,以实现二维材料的计算。 使用该软件,将对由于额外的杂质原子、缺失的原子或结构原子排列中的其他缺陷而导致组成原子的排列偏离完美材料的结构的二维材料的性能进行高质量计算。这些信息将被收集并存储在一个数据库中,该数据库可供更广泛的社区访问,特别是使用 2DCC 材料创新平台的研究人员。了解缺陷和杂质的作用对于晶体管的开发非常重要,这些缺陷和杂质会改变可承载电流的带电粒子的浓度,并以其他方式改变体硅的特性。随时访问该奖项提供的数据可能会对新的基础科学发现和新的电子或光电设备的发明中的二维材料产生类似的变革性影响。该项目与 2DCC 结合将及时满足社区对二维材料中缺陷、掺杂剂和杂质的作用信息日益增长的需求,以帮助指导实验和理论工作。项目期间创建的软件、文档和数据可以应用于其他环境,并将作为材料研究社区网络基础设施的一部分免费提供给更广泛的社区。数据将通过MaterialsWeb 数据库提供。该项目将有助于培训下一代计算研究人员,以促进未来网络基础设施的发展。 与德国研究人员的合作将为参与该项目的学生的教育做出贡献。技术摘要该 EAGER 奖项支持二维材料的计算研究和网络基础设施开发,这些研究将通过宾夕法尼亚州立大学的二维晶体联盟 (2DCC) 材料创新平台提供。 2DCC 所追求的 2D 材料合成和应用的进展需要了解掺杂剂和缺陷如何控制 2D 材料的载流子浓度、特性和迁移率。就像块状半导体一样,二维材料中的掺杂剂和缺陷经常带电。了解它们的形成能和电荷跃迁水平对于设计基于二维材料的新型电子和自旋电子器件至关重要。开发二维材料中缺陷和掺杂剂特性的数据库有可能彻底改变二维电子器件的设计,就像类似数据对块状半导体的作用一样。采用精确混合交换相关泛函的密度泛函理论提供了一种工具,可以预测形成能量和电荷跃迁水平,精度为 0.1 - 0.2 eV,足以用于电子设备设计。然而,单层材料中的带电缺陷对传统的计算方法(例如使用平面波方法的密度泛函理论计算)提出了挑战,并导致能量随真空间距的发散。采用广义偶极子方法并为带电二维材料恢复适当的静电边界条件的校正方案将耦合到 PI 基于 Python 的高通量框架 MPInterfaces。这将使广泛使用的二维材料(例如石墨烯、磷烯、金属二硫属化物和单硫属化物)的缺陷和掺杂剂特性数据库得以快速开发。 然后,这种方法将应用于 2DCC 用户感兴趣的材料,然后应用于完整的 MaterialsWeb 数据库。结果将通过我们的 MaterialsWeb 数据库免费提供。该项目与 2DCC 合作将及时满足社区对缺陷、掺杂剂和杂质在 2D 材料中的作用信息日益增长的需求,以帮助指导实验和理论工作。项目期间创建的软件、文档和数据可以应用于其他环境,并将作为材料研究社区网络基础设施的一部分免费提供给更广泛的社区。数据将通过MaterialsWeb 数据库提供。该项目将有助于培训下一代计算研究人员,以促进未来网络基础设施的发展。与德国研究人员的合作将有助于参与该项目的学生的教育。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Charged vacancy defects in monolayer phosphorene
  • DOI:
    10.1103/physrevmaterials.5.124004
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    B. Rijal;A. M. Tan;C. Freysoldt;R. Hennig
  • 通讯作者:
    B. Rijal;A. M. Tan;C. Freysoldt;R. Hennig
First-principles investigation of charged dopants and dopant-vacancy defect complexes in monolayer MoS2
  • DOI:
    10.1103/physrevmaterials.4.114002
  • 发表时间:
    2020-11-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Tan, Anne Marie Z.;Freysoldt, Christoph;Hennig, Richard G.
  • 通讯作者:
    Hennig, Richard G.
Strain modulation using defects in two-dimensional MoS2
  • DOI:
    10.1103/physrevb.102.085421
  • 发表时间:
    2020-08-21
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Burns, Kory;Tan, Anne Marie Z.;Aitkaliyeva, Assel
  • 通讯作者:
    Aitkaliyeva, Assel
Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections
  • DOI:
    10.1103/physrevmaterials.4.064004
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. M. Tan;C. Freysoldt;R. Hennig
  • 通讯作者:
    A. M. Tan;C. Freysoldt;R. Hennig
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Hennig其他文献

Benchmarking of Fast and Interpretable UF Machine Learning Potentials
快速且可解释的 UF 机器学习潜力的基准测试
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pawan Prakash;Richard Hennig
  • 通讯作者:
    Richard Hennig

Richard Hennig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Hennig', 18)}}的其他基金

DMREF: AI-Accelerated Design of Synthesis Routes for Metastable Materials
DMREF:亚稳态材料合成路线的人工智能加速设计
  • 批准号:
    2118718
  • 财政年份:
    2021
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
SI2-SSE: Software for Semiconductor and Electrochemical Interfaces (SSEI)
SI2-SSE:半导体和电化学接口 (SSEI) 软件
  • 批准号:
    1740251
  • 财政年份:
    2017
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Understanding Hydrogen Interactions with Metastable Surfaces for Tunable Catalysis Systems
合作研究:SusChEM:了解可调谐催化系统的氢与亚稳态表面的相互作用
  • 批准号:
    1665310
  • 财政年份:
    2017
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
SI2-SSE: Genetic Algorithm Software Package for Prediction of Novel Two-Dimensional Materials and Surface Reconstructions
SI2-SSE:用于预测新型二维材料和表面重建的遗传算法软件包
  • 批准号:
    1440547
  • 财政年份:
    2015
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
CAREER: Coupling Quantum Monte Carlo with implicit solvent models for materials in energy and information technologies
职业:将量子蒙特卡罗与能源和信息技术材料的隐式溶剂模型耦合
  • 批准号:
    1542776
  • 财政年份:
    2015
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
FRG: Unit Defect and Microstructural Processes at Metal/Dielectric Interfaces: An Integrated Experimental and Simulation Approach
FRG:金属/电介质界面的单元缺陷和微观结构过程:综合实验和模拟方法
  • 批准号:
    1207293
  • 财政年份:
    2012
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
CAREER: Coupling Quantum Monte Carlo with implicit solvent models for materials in energy and information technologies
职业:将量子蒙特卡罗与能源和信息技术材料的隐式溶剂模型耦合
  • 批准号:
    1056587
  • 财政年份:
    2011
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
IGERT: A Graduate Traineeship in Materials for a Sustainable Future
IGERT:可持续未来材料研究生实习
  • 批准号:
    0903653
  • 财政年份:
    2009
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG: Quantum Monte Carlo Calculations of Deep Earth Materials
合作研究:CMG:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    0703226
  • 财政年份:
    2006
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Quantum Monte Carlo Calculations of Deep Earth Materials
合作研究:CMG:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    0530301
  • 财政年份:
    2005
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Standard Grant

相似海外基金

Characterizing local environments of dopants segregated to grain boundaries using beam-rocking electron microscopy
使用光束摇摆电子显微镜表征偏析到晶界的掺杂剂的局部环境
  • 批准号:
    23K17816
  • 财政年份:
    2023
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Research on band-to-band tunneling via discrete dopants near pn junctions in Si nanodevices
硅纳米器件中 pn 结附近离散掺杂剂的带间隧道效应研究
  • 批准号:
    22K04216
  • 财政年份:
    2022
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Path Integral Monte Carlo Simulations of Molecular Dopants in Solid Parahydrogen
固体仲氢中分子掺杂剂的路径积分蒙特卡罗模拟
  • 批准号:
    558762-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Finite-Temperature Modelling of One, Two, and Many Dopants in the 2D Fermi-Hubbard Model
二维 Fermi-Hubbard 模型中一种、两种和多种掺杂剂的有限温度建模
  • 批准号:
    567963-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Effects of Additives and Dopants on the Chemical and Structural Properties of U Oxides
添加剂和掺杂剂对 U 氧化物化学和结构性质的影响
  • 批准号:
    2743087
  • 财政年份:
    2022
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Studentship
Collaborative Research: Development of Dimeric Molecular n- and p-Dopants and their Application in Organic Light-emitting Diodes
合作研究:二聚分子n-和p-掺杂剂的开发及其在有机发光二极管中的应用
  • 批准号:
    2216857
  • 财政年份:
    2022
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Continuing Grant
Effects of additives and dopants on the chemical and structural properties of U oxides
添加剂和掺杂剂对氧化铀化学和结构性能的影响
  • 批准号:
    2764499
  • 财政年份:
    2022
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Studentship
Path Integral Monte Carlo Simulations of Molecular Dopants in Solid Parahydrogen
固体仲氢中分子掺杂剂的路径积分蒙特卡罗模拟
  • 批准号:
    558762-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Growth and superconducting properties of (RE)Ba2Cu3O7-d single grain superconductors containing nano-size dopants
含纳米掺杂剂的(RE)Ba2Cu3O7-d单晶超导体的生长和超导性能
  • 批准号:
    2436322
  • 财政年份:
    2020
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Studentship
On-chip quantum memories based on erbium dopants in silicon waveguides
基于硅波导中铒掺杂剂的片上量子存储器
  • 批准号:
    452035973
  • 财政年份:
    2020
  • 资助金额:
    $ 16.24万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了