CAREER: Scalable Learning and Models for Mapping Instructions to Actions

职业:可扩展的学习和将指令映射到行动的模型

基本信息

  • 批准号:
    1750499
  • 负责人:
  • 金额:
    $ 55.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Robust language understanding has the potential to dramatically improve the quality and accessibility of autonomous systems operating in complex environments. Already today such systems are becoming increasingly common, including self-driving cars, drones, and robots surveying disaster areas. Natural language interfaces open new opportunities for non-expert users to control complex systems and increase the accessibility of current systems. However, existing methods are limited in expressivity and, more often than not, disappoint users. This Faculty Early Career Development Grant will fundamentally transform how this problem is addressed, and provide new avenues to build systems with robust natural language understanding and ability to improve and learn through interaction with users. The project's five-year goal of grounded language understanding directly connects to robotic agents and autonomous cars, and will enable new interdisciplinary applications and research directions.The goal of the research program is to create a new framework for mapping natural language instructions to actions. Instead of taking a modular approach, this work adopts a single-model view, where input text and raw visual observations are directly mapped to actions. While the approach includes components that can be trained and re-used separately, it does not require any intermediate symbolic representation, and does away with the need for different types of training data, as required to train conventional modular systems. The five-year goal of this project is a continuously learning reflective autonomous agent following natural language instructions in realistic environments. The research will address learning from sparse natural signals, reasoning about complex sequences of instructions, learning continuously from users, and developing interpretable models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
强大的语言理解有可能大大提高在复杂环境中运行的自治系统的质量和可访问性。如今,这种系统已经变得越来越普遍,包括自动驾驶汽车、无人机和机器人在灾区进行调查。自然语言界面为非专家用户控制复杂系统和增加当前系统的可访问性提供了新的机会。然而,现有的方法是有限的,在表现力,往往不是,令用户失望。这一教师早期职业发展补助金将从根本上改变如何解决这个问题,并提供新的途径来构建具有强大的自然语言理解能力的系统,并通过与用户的互动来改进和学习。该项目的五年目标是接地语言理解直接连接到机器人代理和自动汽车,并将实现新的跨学科应用和研究方向。该研究计划的目标是创建一个新的框架,将自然语言指令映射到动作。这项工作没有采用模块化的方法,而是采用了单模型视图,其中输入文本和原始视觉观察直接映射到动作。虽然该方法包括可以单独训练和重用的组件,但它不需要任何中间符号表示,并且不需要训练传统模块化系统所需的不同类型的训练数据。这个项目的五年目标是一个在现实环境中遵循自然语言指令的不断学习的反射自主代理。该研究将解决从稀疏的自然信号中学习,推理复杂的指令序列,从用户那里不断学习,以及开发可解释的模型。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Map Natural Language Instructions to Physical Quadcopter Control using Simulated Flight
  • DOI:
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Valts Blukis;Yannick Terme;Eyvind Niklasson;Ross A. Knepper;Yoav Artzi
  • 通讯作者:
    Valts Blukis;Yannick Terme;Eyvind Niklasson;Ross A. Knepper;Yoav Artzi
Who’s Waldo? Linking People Across Text and Images
  • DOI:
    10.1109/iccv48922.2021.00141
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire Yuqing Cui;Apoorv Khandelwal;Yoav Artzi;Noah Snavely;Hadar Averbuch-Elor
  • 通讯作者:
    Claire Yuqing Cui;Apoorv Khandelwal;Yoav Artzi;Noah Snavely;Hadar Averbuch-Elor
Analysis of Language Change in Collaborative Instruction Following
  • DOI:
    10.18653/v1/2021.findings-emnlp.239
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Effenberger;Eva Yan;Rhia Singh;Alane Suhr;Yoav Artzi
  • 通讯作者:
    Anna Effenberger;Eva Yan;Rhia Singh;Alane Suhr;Yoav Artzi
Executing Instructions in Situated Collaborative Interactions
在情境协作交互中执行指令
TOUCHDOWN: Natural Language Navigation and Spatial Reasoning in Visual Street Environments
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoav Artzi其他文献

Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu
  • 通讯作者:
    Zhou Yu
Modeling Sub-Document Attention Using Viewport Time
使用视口时间建模子文档注意力
A Surprising Failure? Multimodal LLMs and the NLVR Challenge
令人惊讶的失败?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wu;Kianté Brantley;Yoav Artzi
  • 通讯作者:
    Yoav Artzi
Interactive Classification by Asking Informative Questions
通过提出信息性问题进行交互式分类
  • DOI:
    10.18653/v1/2020.acl-main.237
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Yu;Howard Chen;Sida Wang;Yoav Artzi;Tao Lei
  • 通讯作者:
    Tao Lei
UW SPF: The University of Washington Semantic Parsing Framework
UW SPF:华盛顿大学语义解析框架
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoav Artzi;Luke Zettlemoyer
  • 通讯作者:
    Luke Zettlemoyer

Yoav Artzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoav Artzi', 18)}}的其他基金

CRII: RI: Methods for Learning and Recovering Partially Embedded Logical Representations for Question Answering
CRII:RI:学习和恢复用于问答的部分嵌入逻辑表示的方法
  • 批准号:
    1656998
  • 财政年份:
    2017
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    2324651
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Risk-Sensitive Market Design for Power Systems: Scalable Learning and Pricing
职业:电力系统的风险敏感市场设计:可扩展的学习和定价
  • 批准号:
    2048065
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Safe and Scalable Learning-based Control for Autonomous Air Mobility
职业:安全且可扩展的基于学习的自主空中交通控制
  • 批准号:
    2047390
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Smooth statistical distances for a scalable learning theory
职业:可扩展学习理论的平滑统计距离
  • 批准号:
    2046018
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Principled Framework for Resilient, Data Efficient and Scalable Reinforcement Learning for Control
职业:建立一个有弹性、数据高效且可扩展的强化学习控制原则框架
  • 批准号:
    2045783
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
  • 批准号:
    1846088
  • 财政年份:
    2019
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Scalable monolithic integration of Graphene/MoS2/Graphene artificial neurons and synapses for accelerated machine learning
职业:石墨烯/MoS2/石墨烯人工神经元和突触的可扩展整体集成,用于加速机器学习
  • 批准号:
    1845331
  • 财政年份:
    2019
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Combinatorial Structures for Robust and Scalable Learning
职业:利用组合结构实现稳健且可扩展的学习
  • 批准号:
    1845032
  • 财政年份:
    2019
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了