CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
基本信息
- 批准号:2238328
- 负责人:
- 金额:$ 59.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research, software development, and educational efforts on new classes of materials that can be created by combining a few layers (typically from two to four) of atomically thin materials.This family of layered materials has demonstrated great promise for use in electronic, optical, and quantum information applications. Their properties depend sensitively on the chemical composition of individual layers, the relative twist angle between each layer, and even the presence of nearby supporting materials. Hence, the vast combination of such layered systems that can be engineered with unique properties offers an untapped scientific and engineering opportunity.The PI will use a combination of new theoretical methods and large-scale atomistic simulation tools to chart this large phase space of layered systems. The methods that will be developed in this award will not only speed up simulations, but also give conceptual guidance on how to realize systems with desired quantum properties. The PI will study a few selected materials that can potentially host unconventional electronic and optical properties.The award will also synergistically involve community college students to broaden the participation of underrepresented minorities in science, technology, engineering, and math (STEM) fields. Finally, the research outcomes will also inform a proposed graduate-level course that introduces concepts of 2D and quantum materials to materials scientists and engineers. Such efforts will make the field of layered materials more accessible to a broader community, increase the pace of fundamental and applied materials discoveries, and translation of such discoveries to industry.TECHNICAL SUMMARYThis award supports theoretical and computational studies and educational efforts focused on vertically stacked, atomically thin layered materials. The award focuses on systems that display moiré patterns with a wavelength much larger than that of the crystal periodicity of the individual layers.Such systems received considerable interest with the discovery of superconductivity in twisted bilayer graphene in 2018. Indeed, there has been a growing interest in stacking insulating, semiconducting, ferroelectric, and magnetic monolayers, and engineering novel emergent excitations by carefully controlling the energy landscape at these longer wavelength scales.Utilizing large-scale first-principles computer calculations, the PI will develop methods to study such material combinations. The research activities are structured in three complementary objectives. First, the PI will develop methods to compute effective moiré potentials in complex, multilayer van-der-Waals structures using DFT and first-principles-parametrized force-field calculations. The outcome should allow the community to understand the electronic properties in a vast set of layered interfaces at low computational cost. Second, the award will support the development of first-principles approaches to compute excitons in complex van-der-Waals materials – which either include unusual materials combinations or a large number of layer stacking. These will be carried out by ab initio many-body perturbation theory calculations based on the GW and GW combined with Bethe-Salpeter equation (GW-BSE) approaches, together with new methods to incorporate the effect of the moiré potential without requiring large calculations on large supercells. The PI will systematically study the coherence and coupling of emergent excitonic states in such multilayer systems. Finally, this award will support investigations on how twisted 2D materials can realize unusual 1D physics, with applications in sensing and storage.In parallel, this award includes a multi-pronged educational component to reach out to students at different stages of their careers, with a particular emphasis on the local Hispanic/Latinx community which is underrepresented in STEM fields. These efforts involve, for instance, the mentoring of community college students through mini-internship opportunities, and designing and offering a graduate-level course on quantum and 2D materials, closing a common gap in the traditional educational curriculum of materials science and physics courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个职业奖项支持理论和计算研究、软件开发和教育工作,这些新型材料可以通过结合几层(通常是两到四层)原子薄材料来创建。这种层状材料家族已经展示了在电子、光学和量子信息应用中的巨大前景。它们的性质敏感地取决于各个层的化学成分、每层之间的相对扭转角,甚至附近支持材料的存在。因此,这种可以被设计成具有独特性质的分层系统的广泛组合提供了一个尚未开发的科学和工程机会。PI将使用新的理论方法和大规模原子模拟工具的组合来绘制分层系统的大相空间。该奖项将开发的方法不仅将加快模拟速度,还将为如何实现具有所需量子特性的系统提供概念性指导。PI将研究一些可能具有非传统电子和光学特性的精选材料。该奖项还将协同邀请社区学院的学生,扩大未被充分代表的少数民族在科学、技术、工程和数学(STEM)领域的参与。最后,研究成果还将为拟议的研究生课程提供信息,该课程向材料科学家和工程师介绍2D和量子材料的概念。这些努力将使层状材料领域更容易为更广泛的社区所接受,加快基础和应用材料发现的步伐,并将这些发现转化为工业。技术总结该奖项支持理论和计算研究以及专注于垂直堆叠的原子薄层状材料的教育努力。该奖项的重点是显示莫尔图案的波长远远大于单层晶体周期的系统。2018年,随着扭曲双层石墨烯中超导电性的发现,这类系统引起了极大的兴趣。事实上,人们对堆叠绝缘、半导体、铁电和磁性单分子膜以及通过仔细控制这些较长波长尺度上的能量分布来设计新的涌现激发越来越感兴趣。PI将利用大规模的第一原理计算机计算,开发研究这些材料组合的方法。研究活动有三个相辅相成的目标。首先,PI将发展计算复杂的多层van der-Waals结构中的有效莫尔势的方法,使用DFT和第一原理参数化力场计算。结果应该允许社区以较低的计算成本理解大量分层界面中的电子性质。其次,该奖项将支持开发第一原理方法来计算复杂的范德华材料中的激子--这些材料要么包括不寻常的材料组合,要么包括大量的层堆叠。这些将通过基于GW和GW结合Bethe-Salpeter方程(GW-BSE)的从头算多体微扰理论计算来进行,并结合新的方法来考虑莫尔势的影响,而不需要对大型超晶胞进行大量计算。PI将系统地研究这种多层系统中出射激子态的相干和耦合。最后,该奖项将支持研究扭曲的2D材料如何实现不同寻常的一维物理,并将其应用于传感和存储。同时,该奖项还包括一个多管齐下的教育部分,以接触处于不同职业生涯阶段的学生,特别强调在STEM领域代表性不足的当地西班牙裔/拉丁裔社区。例如,这些努力包括通过微型实习机会指导社区大学生,以及设计和提供关于量子和2D材料的研究生水平的课程,填补了材料科学和物理课程传统教育课程中的一个共同空白。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felipe Homrich da Jornada其他文献
Felipe Homrich da Jornada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felipe Homrich da Jornada', 18)}}的其他基金
DMREF: Collaborative research: Data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids
DMREF:协作研究:数据驱动的合成途径发现和区分一维范德华键合固体的电子现象
- 批准号:
1922312 - 财政年份:2019
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
ACED Fab: Co-Design of Novel Electronic-Photonic Systems for Energy-Efficient Coherent Optical Interconnects
ACED Fab:用于节能相干光互连的新型电子-光子系统的协同设计
- 批准号:
2314868 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329090 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329088 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Magnetic, electronic and optical properties of multifunctional main group radicals
多功能主族自由基的磁、电子和光学性质
- 批准号:
RGPIN-2020-04627 - 财政年份:2022
- 资助金额:
$ 59.95万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Optical Metrology of Electronic Interfaces for Silicon Devices
硅器件电子接口的非线性光学计量
- 批准号:
LP200300982 - 财政年份:2022
- 资助金额:
$ 59.95万 - 项目类别:
Linkage Projects
Optical sensing of electronic interactions in two-dimensional semiconductors using a novel cryogenic surface force apparatus
使用新型低温表面力装置对二维半导体中的电子相互作用进行光学传感
- 批准号:
2678473 - 财政年份:2022
- 资助金额:
$ 59.95万 - 项目类别:
Studentship
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
- 批准号:
539204-2019 - 财政年份:2022
- 资助金额:
$ 59.95万 - 项目类别:
Collaborative Research and Development Grants
Emergent electronic structure and optical properties in two-dimensional materials
二维材料中的新兴电子结构和光学特性
- 批准号:
RGPIN-2018-04596 - 财政年份:2022
- 资助金额:
$ 59.95万 - 项目类别:
Discovery Grants Program - Individual