CAREER: Enabling Reproducibility of Interactive Visual Data Analysis

职业:实现交互式可视化数据分析的可重复性

基本信息

  • 批准号:
    1751238
  • 负责人:
  • 金额:
    $ 51.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Reproducibility and justifiability are widely recognized as critical aspects of data-driven decision making in fields as varied as scientific research, business, healthcare, or intelligence analysis. This project is concerned with enabling reproducibility and justifiability of decisions in the data analysis process, specifically as it relates to visual data analysis. Visualization is an important tool for discovery, yet decisions made by humans based on visualizations of data are difficult to capture and to justify. This project will develop methods to justify, communicate, and audit decisions made based on visual analysis. This, in turn will lead to better outcomes, achieved with less effort and cost. The increasing use of visual analysis tools for decision making will make data analysis accessible to a broad variety of people, as visual analysis tools are generally easier to use than scripting languages and do not require extensive computational and statistical training. This research and its related activities increase accessibility and enhance the data analysis infrastructure for research and education. To achieve these goals, this research will develop a framework for making visual analysis sessions not only reproducible but also reusable. The approach is based on tracking semantically meaningful provenance data during an interactive visual analysis session. Once a discovery is made, analysts can use this history to curate a succinct analysis story, adding justifications and explanations to make their analysis reproducible by others. Using a semi-automatic process, analysts will be able to make their actions data-aware, so that their analysis processes become robust to changes, such as updates in the data. A second contribution of the proposed work is the integration of visual analysis into computational analysis processes. While visualization is commonly used to present computational analysis results, the results of a visual analysis session are rarely used to feed into further computational processes. The techniques developed in this project will allow analysts to feed analysis results (selections, aggregations, filters, etc.) back into a computational environment. This will make it possible to use interactive visualization at any point in the data analysis process while maintaining reproducibility and enabling reuse. The expected results include new methods to capture user intent, create data stories from analysis processes, and to integrate computational and visual data analysis, leveraging the strength of both, human abilities and computational power. The results will be disseminated in publications and in the form of open source software, and accessible via the project website (http://vdl.sci.utah.edu/projects/2018-nsf-reproducibility/).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
重复性和合理性被广泛认为是科学研究、商业、医疗保健或情报分析等各种领域中数据驱动决策的关键方面。该项目致力于实现数据分析过程中决策的重复性和合理性,特别是与可视化数据分析有关的决策。可视化是发现的重要工具,但人类基于数据可视化做出的决策很难捕获和证明其合理性。该项目将开发基于视觉分析的证明、沟通和审计决策的方法。这反过来将带来更好的结果,以更少的努力和成本实现。越来越多地使用可视化分析工具进行决策,这将使各式各样的人都能接触到数据分析,因为可视化分析工具通常比脚本语言更容易使用,而且不需要进行广泛的计算和统计培训。这项研究及其相关活动增加了研究和教育的可及性,并加强了数据分析基础设施。为了实现这些目标,这项研究将开发一个框架,使视觉分析会议不仅可重现,而且可重复使用。该方法基于在交互式视觉分析会话期间跟踪语义上有意义的来源数据。一旦发现,分析师可以利用这段历史来策划一个简洁的分析故事,添加理由和解释,使他们的分析可以被其他人重现。使用半自动流程,分析师将能够使他们的行动具有数据意识,从而使他们的分析流程对数据更新等变化变得健壮。拟议工作的第二个贡献是将视觉分析融入计算分析过程。虽然可视化通常用于呈现计算分析结果,但可视化分析会话的结果很少用于进一步的计算过程。此项目中开发的技术将允许分析人员提供分析结果(选择、聚合、筛选等)。回到计算环境中。这将使在数据分析过程中的任何点上使用交互式可视化成为可能,同时保持可再现性并实现重复使用。预期的结果包括新的方法来捕捉用户意图,从分析过程中创建数据故事,以及整合计算和视觉数据分析,利用人类能力和计算能力的力量。结果将在出版物中以开源软件的形式传播,并可通过项目网站获取(http://vdl.sci.utah.edu/projects/2018-nsf-reproducibility/).This奖反映了国家科学基金会的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting intent behind selections in scatterplot visualizations
预测散点图可视化中选择背后的意图
  • DOI:
    10.1177/14738716211038604
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Gadhave, Kiran;Görtler, Jochen;Cutler, Zach;Nobre, Carolina;Deussen, Oliver;Meyer, Miriah;Phillips, Jeff M.;Lex, Alexander
  • 通讯作者:
    Lex, Alexander
Ferret: Reviewing Tabular Datasets for Manipulation
  • DOI:
    10.1111/cgf.14822
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Devin Lange;Shaurya Sahai;J. M. Phillips;A. Lex
  • 通讯作者:
    Devin Lange;Shaurya Sahai;J. M. Phillips;A. Lex
Reusing Interactive Analysis Workflows
重用交互式分析工作流程
  • DOI:
    10.1111/cgf.14528
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gadhave, K.;Cutler, Z.;Lex, A.
  • 通讯作者:
    Lex, A.
Data Hunches: Incorporating Personal Knowledge into Visualizations
reVISit: Looking Under the Hood of Interactive Visualization Studies
reVISit:深入探究交互式可视化研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Lex其他文献

Aardvark: Composite Visualizations of Trees, Time-Series, and Images
Aardvark:树木、时间序列和图像的复合可视化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Devin Lange;Robert Judson;Thomas A. Zangle;Alexander Lex
  • 通讯作者:
    Alexander Lex
C APTURING U SER I NTENT WHEN B RUSHING IN S CATTERPLOTS
在刷 S Catterplots 时捕捉用户意图
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Gadhave;Jochen Görtler;Zach Cutler;C. Nobre;Oliver Deussen;Miriah Meyer;Jeff Phillips;Alexander Lex;Carolina No
  • 通讯作者:
    Carolina No
Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in Notebooks
循环:利用来源和可视化支持笔记本中的探索性数据分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klaus Eckelt;Kiran Gadhave;Alexander Lex;M. Streit
  • 通讯作者:
    M. Streit
Persist: Persistent and Reusable Interactions in Computational Notebooks
持久:计算笔记本中持久且可重用的交互
  • DOI:
    10.1111/cgf.15092
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Kiran Gadhave;Zach Cutler;Alexander Lex
  • 通讯作者:
    Alexander Lex
Human-Centered Approaches for Provenance in Automated Data Science
自动化数据科学中以人为本的起源方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ∗. AnamariaCrisan;∗. LarsKotthoff;∗. MarcStreit;∗. KaiXu;A. Endert;Alexander Lex;Alvitta Ottley;C. Brumar;L. Battle;Mennatallah El;.. NadiaBoukhelifa.....;Jen Rogers;Emily Wall;Mehdi Chakhchoukh;Marie Anastacio;Rebecca Faust;C. Turkay;Steffen Koch;A. Kerren;Jürgen Bernard;Klaus Eckelt;Sheeba Samuel;David Koop;Kiran Gadhave;Dominik Moritz;Lars Kotthof;T. Tornede;C. Walchshofer;A. Hinterreiter;Holger Stitz;Marc Streit Main
  • 通讯作者:
    Marc Streit Main

Alexander Lex的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Lex', 18)}}的其他基金

Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213756
  • 财政年份:
    2022
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
EAGER: Understanding and Mitigating Misinformation in Visualizations on Social Media
EAGER:理解和减少社交媒体可视化中的错误信息
  • 批准号:
    2041136
  • 财政年份:
    2021
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: HDR: Reproducible Visual Analysis of Multivariate Networks with MultiNet
合作研究:框架:软件:HDR:使用 MultiNet 对多元网络进行可重复的视觉分析
  • 批准号:
    1835904
  • 财政年份:
    2019
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant

相似海外基金

Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
  • 批准号:
    DE240100802
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Discovery Early Career Researcher Award
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
  • 批准号:
    EP/Z531285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Research Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Research Grant
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
  • 批准号:
    EP/X040992/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Research Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Continuing Grant
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
  • 批准号:
    2328276
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Continuing Grant
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Continuing Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
  • 批准号:
    2339193
  • 财政年份:
    2024
  • 资助金额:
    $ 51.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了