Collaborative Research: Framework: Software: HDR: Reproducible Visual Analysis of Multivariate Networks with MultiNet
合作研究:框架:软件:HDR:使用 MultiNet 对多元网络进行可重复的视觉分析
基本信息
- 批准号:1835904
- 负责人:
- 金额:$ 189.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multivariate networks -- datasets that link together entities that are associated with multiple different variables -- are a critical data representation for a range of high-impact problems, from understanding how our bodies work to uncovering how social media influences society. These data representations are a rich and complex reflection of the multifaceted relationships that exist in the world. Reasoning about a problem using a multivariate network allows an analyst to ask questions beyond those about explicit connectivity alone: Do groups of social-media influencers have similar backgrounds or experiences? Do species that co-evolve live in similar climates? What patterns of cell-types support different types of brain functions? Questions like these require understanding patterns and trends about entities with respect to both their attributes and their connectivity, leading to inferences about relationships beyond the initial network structure. As data continues to become an increasingly important driver of scientific discovery, datasets of networks have also become increasingly complex. These networks capture information about relationships between entities as well as attributes of the entities and the connections. Tools used in practice today provide very limited support for reasoning about networks and are also limited in the how users can interact with them. This lack of support leaves analysts and scientists to piece together workflows using separate tools, and significant amounts of programming, especially in the data preparation step. This project aims fill this critical gap in the existing cyber-infrastructure ecosystem for reasoning about multivariate networks by developing MultiNet, a robust, flexible, secure, and sustainable open-source visual analysis system. MultiNet aims to change the landscape of visual analysis capabilities for reasoning about and analyzing multivariate networks. The web-based tool, along with an underlying plug-in-based framework, will support three core capabilities: (1) interactive, task-driven visualization of both the connectivity and attributes of networks, (2) reshaping the underlying network structure to bring the network into a shape that is well suited to address analysis questions, and (3) leveraging provenance data to support reproducibility, communication, and integration in computational workflows. These capabilities will allow scientists to ask new classes of questions about network datasets, and lead to insights about a wide range of pressing topics. To meet this goal, we will ground the design of MultiNet in four deeply collaborative case studies with domain scientists in biology, neuroscience, sociology, and geology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多元网络——将与多个不同变量相关的实体联系在一起的数据集——是一系列高影响力问题的关键数据表示,从了解我们的身体如何运作到揭示社交媒体如何影响社会。这些数据表示是世界上存在的多方面关系的丰富而复杂的反映。使用多元网络对问题进行推理,使分析师能够提出一些问题,而不仅仅是关于明确的联系:社交媒体影响者群体是否具有相似的背景或经历?共同进化的物种是否生活在相似的气候中?什么类型的细胞支持不同类型的大脑功能?像这样的问题需要理解实体的属性和连接性方面的模式和趋势,从而推断出超出初始网络结构的关系。随着数据继续成为科学发现日益重要的驱动力,网络数据集也变得越来越复杂。这些网络捕获有关实体之间关系的信息,以及实体和连接的属性。目前在实践中使用的工具对网络推理提供的支持非常有限,而且在用户如何与网络交互方面也受到限制。由于缺乏支持,分析师和科学家不得不使用不同的工具和大量的编程来拼凑工作流程,尤其是在数据准备步骤中。该项目旨在通过开发多网络来填补现有网络基础设施生态系统中对多元网络进行推理的关键空白,多网络是一个强大、灵活、安全和可持续的开源可视化分析系统。多网络旨在改变对多元网络进行推理和分析的可视化分析能力。基于web的工具,以及基于底层插件的框架,将支持三个核心功能:(1)网络连接性和属性的交互式、任务驱动的可视化;(2)重塑底层网络结构,使网络形成一个非常适合解决分析问题的形状;(3)利用来源数据来支持计算工作流程中的再现性、通信和集成。这些能力将允许科学家提出关于网络数据集的新问题,并导致对广泛的紧迫主题的见解。为了实现这一目标,我们将与生物学、神经科学、社会学和地质学领域的科学家在四个深度合作的案例研究中奠定多网设计的基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Troubling Collaboration: Matters of Care for Visualization Design Study
令人烦恼的协作:可视化设计研究的注意事项
- DOI:10.1145/3544548.3581168
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Akbaba, Derya;Lange, Devin;Correll, Michael;Lex, Alexander;Meyer, Miriah
- 通讯作者:Meyer, Miriah
reVISit: Looking Under the Hood of Interactive Visualization Studies
reVISit:深入探究交互式可视化研究
- DOI:10.1145/3411764.3445382
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nobre, Carolina;Wootton, Dylan;Cutler, Zach;Harrison, Lane;Pfister, Hanspeter;Lex, Alexander
- 通讯作者:Lex, Alexander
Data Hunches: Incorporating Personal Knowledge into Visualizations
- DOI:10.1109/tvcg.2022.3209451
- 发表时间:2021-09
- 期刊:
- 影响因子:5.2
- 作者:Haihan Lin;Derya Akbaba;Miriah D. Meyer;A. Lex
- 通讯作者:Haihan Lin;Derya Akbaba;Miriah D. Meyer;A. Lex
The State of the Art in Visualizing Multivariate Networks
- DOI:10.1111/cgf.13728
- 发表时间:2019-05
- 期刊:
- 影响因子:2.5
- 作者:C. Nobre;Miriah D. Meyer;M. Streit;A. Lex
- 通讯作者:C. Nobre;Miriah D. Meyer;M. Streit;A. Lex
Insights From Experiments With Rigor in an EvoBio Design Study
EvoBio 设计研究中严格实验的见解
- DOI:10.1109/tvcg.2020.3030405
- 发表时间:2021
- 期刊:
- 影响因子:5.2
- 作者:Rogers, Jen;Patton, Austin H.;Harmon, Luke;Lex, Alexander;Meyer, Miriah
- 通讯作者:Meyer, Miriah
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Lex其他文献
Aardvark: Composite Visualizations of Trees, Time-Series, and Images
Aardvark:树木、时间序列和图像的复合可视化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Devin Lange;Robert Judson;Thomas A. Zangle;Alexander Lex - 通讯作者:
Alexander Lex
C APTURING U SER I NTENT WHEN B RUSHING IN S CATTERPLOTS
在刷 S Catterplots 时捕捉用户意图
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Gadhave;Jochen Görtler;Zach Cutler;C. Nobre;Oliver Deussen;Miriah Meyer;Jeff Phillips;Alexander Lex;Carolina No - 通讯作者:
Carolina No
Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in Notebooks
循环:利用来源和可视化支持笔记本中的探索性数据分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Klaus Eckelt;Kiran Gadhave;Alexander Lex;M. Streit - 通讯作者:
M. Streit
Persist: Persistent and Reusable Interactions in Computational Notebooks
持久:计算笔记本中持久且可重用的交互
- DOI:
10.1111/cgf.15092 - 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Kiran Gadhave;Zach Cutler;Alexander Lex - 通讯作者:
Alexander Lex
Human-Centered Approaches for Provenance in Automated Data Science
自动化数据科学中以人为本的起源方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
∗. AnamariaCrisan;∗. LarsKotthoff;∗. MarcStreit;∗. KaiXu;A. Endert;Alexander Lex;Alvitta Ottley;C. Brumar;L. Battle;Mennatallah El;.. NadiaBoukhelifa.....;Jen Rogers;Emily Wall;Mehdi Chakhchoukh;Marie Anastacio;Rebecca Faust;C. Turkay;Steffen Koch;A. Kerren;Jürgen Bernard;Klaus Eckelt;Sheeba Samuel;David Koop;Kiran Gadhave;Dominik Moritz;Lars Kotthof;T. Tornede;C. Walchshofer;A. Hinterreiter;Holger Stitz;Marc Streit Main - 通讯作者:
Marc Streit Main
Alexander Lex的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Lex', 18)}}的其他基金
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
- 批准号:
2213756 - 财政年份:2022
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
EAGER: Understanding and Mitigating Misinformation in Visualizations on Social Media
EAGER:理解和减少社交媒体可视化中的错误信息
- 批准号:
2041136 - 财政年份:2021
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
CAREER: Enabling Reproducibility of Interactive Visual Data Analysis
职业:实现交互式可视化数据分析的可重复性
- 批准号:
1751238 - 财政年份:2018
- 资助金额:
$ 189.97万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342748 - 财政年份:2024
- 资助金额:
$ 189.97万 - 项目类别:
Standard Grant














{{item.name}}会员




