EAGER: Understanding and Mitigating Misinformation in Visualizations on Social Media

EAGER:理解和减少社交媒体可视化中的错误信息

基本信息

  • 批准号:
    2041136
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

In a time of crisis, such as during a hurricane or a global pandemic, social media is an important source of information for the general population. In these scenarios, data visualizations are often used to convey information that is critical for decision making by individuals. For example, a visualization of the path of a hurricane can inform the affected population about the need to prepare or evacuate; while a visualization about the prevalence of a disease in a certain area can inform personal choices, such as limiting interactions with others during a relevant time period. Visualizations, however, can be flawed, which can lead to misinterpretation of the data, and, in a crisis, lead to decisions with negative consequences. This project seeks to identify aspects of visualizations that makes them widely shared, identify flaws a visualization might have, and warn social media users about them. Ultimately, this project can lead to better responses to a crisis by the general population, and contribute to improving visualization literacy. Finally, this project will also enable the training of two graduate students, provide opportunities for undergraduate research, and curate material that can be leveraged by educators teaching about visualization design.These goals will be achieved by applying existing and novel methods, such as topic modeling and calculating measures of social attention, to three large dataset of social media posts related to recent crisis. Using a qualitative coding approach, a taxonomy of design problems will be developed. This taxonomy will be used to label a large dataset. Finally, a prototype intervention in the form of a plug-in that warns of problematic visualizations, but also enables users to classify problems with visualizations they encounter, will be developed. The dataset and the annotations compiled in the course of this project will be shared publicly. The software created will be released under a permissive, non-viral open source license.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在危机时期,如飓风或全球大流行病期间,社交媒体是普通民众的重要信息来源。在这些场景中,数据可视化通常用于传达对个人决策至关重要的信息。例如,飓风路径的可视化可以告知受影响的人口需要做好准备或撤离;而某一地区疾病流行的可视化可以告知个人选择,例如在相关时间段内限制与他人的互动。然而,可视化可能存在缺陷,这可能导致对数据的误解,并在危机中导致具有负面后果的决策。该项目旨在识别可视化的各个方面,使其广泛共享,识别可视化可能存在的缺陷,并警告社交媒体用户。最终,这个项目可以导致更好地应对危机的一般人群,并有助于提高可视化素养。最后,该项目还将培养两名研究生,为本科生研究提供机会,并策划可供教育工作者教授可视化设计的材料。这些目标将通过应用现有的和新颖的方法来实现,例如主题建模和计算社会关注度的措施,与最近的危机有关的社交媒体帖子的三个大数据集。使用定性编码方法,设计问题的分类将被开发。此分类法将用于标记大型数据集。最后,将开发一个插件形式的原型干预,该插件警告有问题的可视化,但也使用户能够对他们遇到的可视化问题进行分类。该项目过程中汇编的数据集和注释将公开共享。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Lex其他文献

Aardvark: Composite Visualizations of Trees, Time-Series, and Images
Aardvark:树木、时间序列和图像的复合可视化
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Devin Lange;Robert Judson;Thomas A. Zangle;Alexander Lex
  • 通讯作者:
    Alexander Lex
C APTURING U SER I NTENT WHEN B RUSHING IN S CATTERPLOTS
在刷 S Catterplots 时捕捉用户意图
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Gadhave;Jochen Görtler;Zach Cutler;C. Nobre;Oliver Deussen;Miriah Meyer;Jeff Phillips;Alexander Lex;Carolina No
  • 通讯作者:
    Carolina No
Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in Notebooks
循环:利用来源和可视化支持笔记本中的探索性数据分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klaus Eckelt;Kiran Gadhave;Alexander Lex;M. Streit
  • 通讯作者:
    M. Streit
Persist: Persistent and Reusable Interactions in Computational Notebooks
持久:计算笔记本中持久且可重用的交互
  • DOI:
    10.1111/cgf.15092
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Kiran Gadhave;Zach Cutler;Alexander Lex
  • 通讯作者:
    Alexander Lex
Human-Centered Approaches for Provenance in Automated Data Science
自动化数据科学中以人为本的起源方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ∗. AnamariaCrisan;∗. LarsKotthoff;∗. MarcStreit;∗. KaiXu;A. Endert;Alexander Lex;Alvitta Ottley;C. Brumar;L. Battle;Mennatallah El;.. NadiaBoukhelifa.....;Jen Rogers;Emily Wall;Mehdi Chakhchoukh;Marie Anastacio;Rebecca Faust;C. Turkay;Steffen Koch;A. Kerren;Jürgen Bernard;Klaus Eckelt;Sheeba Samuel;David Koop;Kiran Gadhave;Dominik Moritz;Lars Kotthof;T. Tornede;C. Walchshofer;A. Hinterreiter;Holger Stitz;Marc Streit Main
  • 通讯作者:
    Marc Streit Main

Alexander Lex的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Lex', 18)}}的其他基金

Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
  • 批准号:
    2213756
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: HDR: Reproducible Visual Analysis of Multivariate Networks with MultiNet
合作研究:框架:软件:HDR:使用 MultiNet 对多元网络进行可重复的视觉分析
  • 批准号:
    1835904
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Enabling Reproducibility of Interactive Visual Data Analysis
职业:实现交互式可视化数据分析的可重复性
  • 批准号:
    1751238
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: SaTC: RUI: Understanding and Collectively Mitigating Harms from Deepfake Imagery
CRII:SaTC:RUI:理解并共同减轻 Deepfake 图像的危害
  • 批准号:
    2348326
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Kipiyecipakiciipe "coming home": Establishing clinical cultural neuroscience as a tool for understanding the role of traditional cultural engagement in mitigating substance misuse and disorder
Kipiyecipakiciipe“回家”:建立临床文化神经科学作为理解传统文化参与在减轻药物滥用和疾病中的作用的工具
  • 批准号:
    10740237
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Understanding, forecasting, and mitigating zoonotic mosquito-borne viral disease in the U.K.
了解、预测和减轻英国人畜共患蚊媒病毒性疾病
  • 批准号:
    BB/X018024/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Understanding and mitigating exacerbated nicotine use resulting from Pavlovianinteroceptive conditioning
了解和缓解巴甫洛夫内感受调节导致的尼古丁使用加剧
  • 批准号:
    10736191
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Understanding and Mitigating the Impacts of Code Intelligence Systems in Introductory Programming Courses
了解并减轻代码智能系统在编程入门课程中的影响
  • 批准号:
    2225373
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
  • 批准号:
    2333448
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Understanding and Mitigating Water Droplet Impingement Erosion
了解和减轻水滴冲击侵蚀
  • 批准号:
    RGPIN-2018-06789
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
SaTC: CORE: Small: Understanding and Mitigating the Security Risks of AutoML
SaTC:核心:小型:了解和减轻 AutoML 的安全风险
  • 批准号:
    2212323
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Understanding and mitigating the negative effects of dynamic river ice processes in the Manitoba Hydro system
了解并减轻马尼托巴水电系统动态河冰过程的负面影响
  • 批准号:
    543865-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding and Mitigating Triboelectric Artifacts in Wearable Electronics by Synergic Approaches
通过协同方法理解和减轻可穿戴电子产品中的摩擦电伪影
  • 批准号:
    2219375
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了