CAREER: Structure and Interpolation in Number Theory and Beyond
职业:数论及其他领域的结构和插值
基本信息
- 批准号:1751281
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator (PI) will investigate connections between seemingly disparate data arising in number theory, a field of mathematics with deep ties to many areas in sciences and engineering. In particular, the PI will study structures associated to the whole numbers, fractions, and related sets called "number fields." The PI aims to elucidate how these structures vary across certain infinite collections of number fields, and furthermore, how their behavior explains currently mysterious phenomena in number theory, geometry, and beyond. In the course of the project the PI will organize workshops to educate graduate students about recent research developments and to promote diverse collaborations. To engage undergraduate students in topics motivating her research, the PI will develop an innovative, interactive course integrating approaches from the arts. Partly through a collaboration with museum curators, the PI will also organize public exhibits for the broader community.The research in this project focuses on L-functions, automorphic forms, and p-adic methods as tools to understand particular structures and how they vary in families. Anticipated consequences include progress toward instances of the Greenberg-Iwasawa main conjectures (connecting the structures of Galois groups with p-adic L-functions) and the Bloch-Kato conjectures (equating ranks of certain groups with the order of vanishing of associated L-functions at the central point, in analogy with the Birch and Swinnerton-Dyer conjecture). Key components, which are interconnected so that progress on one advances the others, include investigating the interplay between p-adic and archimedean properties of L-functions and automorphic forms, studying p-adic aspects of unitary Shimura varieties, and bridging different approaches to p-adic automorphic forms to gain insight into the behavior of associated data whose significance extends into number theory, homotopy theory, and arithmetic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
首席研究员(PI)将调查数论中出现的看似不同的数据之间的联系,数论是一个与科学和工程的许多领域有着深厚联系的数学领域。特别是,PI将研究与整数,分数和相关集合(称为“数域”)相关的结构。PI旨在阐明这些结构如何在某些无限的数域集合中变化,以及它们的行为如何解释目前数论,几何学和其他领域的神秘现象。在项目过程中,PI将组织研讨会,向研究生介绍最新的研究进展,并促进各种合作。 为了让本科生参与激发她研究的主题,PI将开发一个创新的,互动的课程,整合艺术的方法。通过与博物馆馆长的合作,PI还将为更广泛的社区组织公开展览。该项目的研究重点是L-函数,自守形式和p-adic方法,作为理解特定结构及其在家庭中如何变化的工具。预期的结果包括朝着格林伯格-岩泽主图(将伽罗瓦群的结构与p进L-函数联系起来)和布洛赫-加藤图(将某些群的秩与相关L-函数在中心点的消失阶等同起来,类似于伯奇和斯温纳顿-戴尔猜想)的实例取得进展。关键组成部分,这是相互联系的,使一个进步的其他,包括调查之间的相互作用的p-adic和阿基米德性质的L-函数和自守形式,研究p-adic方面的酉志村品种,并桥接不同的方法,以p-adic自守形式,以深入了解行为的相关数据,其意义延伸到数论,同伦理论,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Seattle Universal Math Museum: Transforming Perceptions Of Math
西雅图环球数学博物馆:改变人们对数学的看法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Eischen, Ellen
- 通讯作者:Eischen, Ellen
Entire Theta Operators at Unramified Primes
未分支素数处的整个 Theta 算子
- DOI:10.1093/imrn/rnab190
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Eischen, E;Mantovan, E
- 通讯作者:Mantovan, E
-ADIC -FUNCTIONS FOR UNITARY GROUPS
-ADIC -单一组的功能
- DOI:10.1017/fmp.2020.4
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:EISCHEN, ELLEN;HARRIS, MICHAEL;LI, JIANSHU;SKINNER, CHRISTOPHER
- 通讯作者:SKINNER, CHRISTOPHER
EARLY CAREER: Moving Ahead in Your Research
早期职业生涯:在研究中取得进步
- DOI:10.1090/noti1791
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Eischen, E. E.
- 通讯作者:Eischen, E. E.
Illustrating Mathematics
说明数学
- DOI:10.1080/10724117.2021.1940509
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Eischen, Ellen
- 通讯作者:Eischen, Ellen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ellen Eischen其他文献
Ellen Eischen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ellen Eischen', 18)}}的其他基金
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
- 批准号:
2302011 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1601959 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557642 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Automorphic Forms and L-functions: P-adic Aspects and Applications
自守形式和 L 函数:P 进数方面和应用
- 批准号:
1559609 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Automorphic Forms and L-functions: P-adic Aspects and Applications
自守形式和 L 函数:P 进数方面和应用
- 批准号:
1501083 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
L-functions and Eisenstein series: p-adic aspects and applications
L-函数和爱森斯坦级数:p-adic 方面和应用
- 批准号:
1201333 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
L-functions and Eisenstein series: p-adic aspects and applications
L-函数和爱森斯坦级数:p-adic 方面和应用
- 批准号:
1249384 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
- 批准号:
2349311 - 财政年份:2025
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
- 批准号:
EP/X039285/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant