Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
基本信息
- 批准号:1601959
- 负责人:
- 金额:$ 2.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 30th Annual Workshop on Automorphic Forms and Related Topics (AFW) will take place March 7-10, 2016 at Wake Forest University in Winston-Salem, North Carolina. The AFW is an internationally recognized, well-respected conference on topics related to automorphic forms, which have played a key role in many recent breakthroughs in mathematics. Continuing a three-decade long tradition, the AFW will bring together a geographically diverse group of participants at a wide range of career stages, from graduate students to senior professors. Typically, about half of the attendees at the AFW are at early stages of their careers, and about one quarter to one third of participants are women. The AFW will continue to provide a supportive and encouraging environment for giving talks, exchanging ideas, and beginning new collaborations. This is the first time in at least a dozen years that the workshop -- which attracts participants from across the US as well as internationally -- will meet on the east coast, home to many experts on automorphic forms and closely related topics. Thus, in addition to attracting speakers who participate annually, the workshop is likely to draw a mix of new attendees who will contribute new perspectives and energy and benefit from the workshop. In addition to the research talks, the AFW will - like in past years - have two professional development panels on topics such as starting a tenure track job, forming collaborations, and transitioning from one career stage to the next. The organizers of the workshop, which has an international reputation for providing a supportive atmosphere for junior researchers, are committed to continuing to facilitate a supportive, inclusive, vertically integrated environment.Automorphic forms constitute a major area of study in number theory and related areas. One of the goals of the AFW is to promote new interactions and collaborations between researchers working in different areas concerning automorphic forms. Thus, the workshop will highlight a wide range of developments in areas including the analytic, algebraic, combinatorial, and p-adic theory of automorphic forms and related topics such as L-functions. Automorphic forms have played a key role in many breakthroughs in mathematics, including the proofs of Fermat's Last Theorem (by Andrew Wiles), Serre's Conjecture (by Chandrashekhar Khare, Mark Kisin, and Jean-Pierre Wintenberger), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Uniformity Conjecture (by Yuri Bilu and Pierre Parent), and the Fundamental Lemma (for which Ngo Bau Chau was awarded the Fields Medal). The topics covered in this year's workshop are likely to include elliptic, Siegel, Hilbert, and Bianchi modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, and additional related areas of research.Website:http://automorphicformsworkshop.org/
第30届自构形及相关话题年度研讨会(AFW)将于2016年3月7日至10日在北卡罗来纳州温斯顿-塞勒姆的维克森林大学举行。AFW是一个国际公认的、备受尊敬的会议,主题与自同构形式有关,这些主题在最近数学领域的许多突破中发挥了关键作用。AFW延续了30年的传统,将把来自不同地理位置、处于不同职业阶段的参与者聚集在一起,从研究生到高级教授。通常,AFW的参与者中约有一半处于职业生涯的早期阶段,约四分之一至三分之一的参与者是女性。AFW将继续为演讲、交流思想和开始新的合作提供一个支持和鼓励的环境。这是至少十几年来,这个吸引了来自美国各地以及国际上的参与者的研讨会首次在东海岸举行,那里聚集了许多研究自同构形式和密切相关话题的专家。因此,除了吸引每年参加的发言者外,讲习班还可能吸引新的与会者,他们将贡献新的观点和能量,并从讲习班中受益。除了研究讲座,AFW将像过去几年一样,有两个职业发展小组,讨论的主题包括开始终身教职、形成合作以及从一个职业阶段过渡到下一个阶段。研讨会的组织者在国际上享有盛誉,为初级研究人员提供了一个支持性的氛围,致力于继续促进一个支持性的、包容的、垂直整合的环境。自同构形式是数论和相关领域的一个主要研究领域。AFW的目标之一是促进在不同领域工作的研究人员之间关于自同构形式的新的互动和合作。因此,工作坊将重点介绍自同构形式的解析、代数、组合和p-进位理论以及相关主题(如L函数)的广泛发展。自同构形式在许多数学突破中发挥了关键作用,包括费马大定理的证明(安德鲁·怀尔斯),Serre猜想(Chandrashekhar Khare,Mark Kisin和Jean-Pierre Wtenberger),Sato-Tate猜想(Thomas Barnet-Lamb,David Geraghty,Michael Harris和Richard Taylor),Serre一致性猜想(Yuri Bilu和Pierre Parent),以及基本引理(Ngo Bau Chau因此而被授予菲尔兹奖)。今年研讨会的主题可能包括椭圆、西格尔、希尔伯特和比安奇模形式、椭圆曲线和阿贝尔族、L函数的特殊值、L函数的p-进方面和自同构形、与表示理论的联系、模拟模形式、二次形式以及research.Website:http://automorphicformsworkshop.org/的其他相关领域
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ellen Eischen其他文献
Ellen Eischen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ellen Eischen', 18)}}的其他基金
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
- 批准号:
2302011 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
CAREER: Structure and Interpolation in Number Theory and Beyond
职业:数论及其他领域的结构和插值
- 批准号:
1751281 - 财政年份:2018
- 资助金额:
$ 2.28万 - 项目类别:
Continuing Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557642 - 财政年份:2015
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Automorphic Forms and L-functions: P-adic Aspects and Applications
自守形式和 L 函数:P 进数方面和应用
- 批准号:
1559609 - 财政年份:2015
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Automorphic Forms and L-functions: P-adic Aspects and Applications
自守形式和 L 函数:P 进数方面和应用
- 批准号:
1501083 - 财政年份:2015
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
L-functions and Eisenstein series: p-adic aspects and applications
L-函数和爱森斯坦级数:p-adic 方面和应用
- 批准号:
1201333 - 财政年份:2012
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
L-functions and Eisenstein series: p-adic aspects and applications
L-函数和爱森斯坦级数:p-adic 方面和应用
- 批准号:
1249384 - 财政年份:2012
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
相似海外基金
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1854113 - 财政年份:2019
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1701585 - 财政年份:2017
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Building Bridges: 3rd EU/US Summer School and automorphic forms workshop
搭建桥梁:第三届欧盟/美国暑期学校和自守形式研讨会
- 批准号:
1630217 - 财政年份:2016
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics, June 30-July 1, 2014
搭建桥梁:第二届欧盟/美国暑期学校
- 批准号:
1407077 - 财政年份:2014
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Automorphic Forms Workshop 2014, May 12-16 2014
自守形式研讨会 2014,2014 年 5 月 12-16 日
- 批准号:
1404066 - 财政年份:2014
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant