CAREER: Physically-Motivated Learning of 3D Shape and Semantics
职业:3D 形状和语义的物理驱动学习
基本信息
- 批准号:1751365
- 负责人:
- 金额:$ 54.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A system that navigates or interacts with the real world must reason about 3D geometric properties such as distances or orientations of objects, as well as semantic properties such as part locations or object types. This project combines physics-based modeling of images and shapes, with the versatility of robust optimization and deep learning, to recover 3D shape and semantic information. The work establishes connections between computer vision, machine learning, computer graphics and perception. Vision is a powerful sensing modality since images encode rich information about shape and semantics. However, image formation is a physical phenomenon that often includes complex factors like shape deformations, occlusions, material properties and participating media. Consequently, practical deployment of autonomous or intelligent vision-based systems requires robustness to the effects of diverse physical factors. Such effects may be inverted by modeling the image formation process, but hand-crafted features and hard-coded rules face limitations for data inconsistent with the model. Recent advances in deep learning have led to impressive performances, but generalization of a purely data-driven approach to handle such complex effects is expensive. To address these challenges, this project develops technologies of handling the diversity of real-world images through incorporation of physical models of image formation within deep learning frameworks. The project creates a cross-disciplinary educational program in vision, graphics, learning and perception through coursework that draws connections across wide areas such as physically-based modeling, deep learning, 3D reconstruction and semantic understanding. The program also develops K-12 educative modules that provide experiential insight into novel technologies such as virtual reality or self-driving, with a focus on outreach to students from under-represented backgrounds.This research lays the foundations for physically-motivated learning of 3D shape and semantics, with benefits such as higher accuracy, better generalization or greater ease of training. It develops theoretical frameworks that relate unknown material behavior to 3D shape, which allows robust optimization frameworks and convolutional neural network architectures for material-invariant shape estimation. It designs novel network structures that model complex transformations, to generalize recovery of shape or semantics across non-rigid and articulated deformations, or distortions due to refraction and participating media. Further, it uses physical models of appearance or motion to bridge the domain gap between simulations and real images, leading to weakly supervised frameworks that mitigate the expense of data annotation. These advances enable novel applications for light field imaging, augmented reality, self-driving in challenging weather, or underwater robotic exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
导航或与真实的世界交互的系统必须推理3D几何属性,例如对象的距离或方向,以及语义属性,例如部件位置或对象类型。该项目将基于物理的图像和形状建模与鲁棒优化和深度学习的多功能性相结合,以恢复3D形状和语义信息。这项工作建立了计算机视觉、机器学习、计算机图形学和感知之间的联系。视觉是一种强大的感知方式,因为图像编码了关于形状和语义的丰富信息。然而,图像形成是一种物理现象,通常包括复杂的因素,如形状变形,遮挡,材料特性和参与介质。因此,自主或智能视觉系统的实际部署需要对各种物理因素的影响具有鲁棒性。这种效果可以通过对图像形成过程进行建模来逆转,但是手工制作的特征和硬编码的规则面临与模型不一致的数据的限制。深度学习的最新进展带来了令人印象深刻的性能,但推广纯数据驱动的方法来处理这种复杂的影响是昂贵的。为了应对这些挑战,该项目通过将图像形成的物理模型纳入深度学习框架来开发处理真实世界图像多样性的技术。该项目通过课程创建了视觉,图形,学习和感知方面的跨学科教育计划,该课程将基于物理的建模,深度学习,3D重建和语义理解等广泛领域联系起来。该项目还开发了K-12教育模块,为虚拟现实或自动驾驶等新技术提供体验式见解,重点关注来自代表性不足背景的学生。这项研究为3D形状和语义的物理动机学习奠定了基础,具有更高的准确性,更好的泛化或更易于培训等优点。它开发了将未知材料行为与3D形状相关联的理论框架,这允许稳健的优化框架和卷积神经网络架构用于材料不变的形状估计。它设计了新颖的网络结构,对复杂的变换进行建模,以概括非刚性和铰接变形或由于折射和参与介质引起的扭曲的形状或语义的恢复。此外,它使用外观或运动的物理模型来弥合模拟和真实的图像之间的域差距,从而产生减轻数据注释费用的弱监督框架。这些进步使光场成像、增强现实、恶劣天气下的自动驾驶或水下机器人探索等新应用成为可能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to reconstruct shape and spatially-varying reflectance from a single image
- DOI:10.1145/3272127.3275055
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Zhengqin Li;Zexiang Xu;R. Ramamoorthi;Kalyan Sunkavalli;Manmohan Chandraker
- 通讯作者:Zhengqin Li;Zexiang Xu;R. Ramamoorthi;Kalyan Sunkavalli;Manmohan Chandraker
Single-Shot Analysis of Refractive Shape Using Convolutional Neural Networks
使用卷积神经网络单次分析屈光形状
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Stets, Jonathan;Li, Zhengqin;Frisvad, Jeppe;Chandraker, Manmohan
- 通讯作者:Chandraker, Manmohan
Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image
- DOI:10.1007/978-3-030-01219-9_5
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Zhengqin Li;Kalyan Sunkavalli;Manmohan Chandraker
- 通讯作者:Zhengqin Li;Kalyan Sunkavalli;Manmohan Chandraker
Neural Mesh Flow: 3D Manifold Mesh Generationvia Diffeomorphic Flows
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Kunal Gupta;Manmohan Chandraker
- 通讯作者:Kunal Gupta;Manmohan Chandraker
IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes
- DOI:10.1109/cvpr52688.2022.00284
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Rui Zhu;Zhengqin Li;J. Matai;F. Porikli;Manmohan Chandraker
- 通讯作者:Rui Zhu;Zhengqin Li;J. Matai;F. Porikli;Manmohan Chandraker
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manmohan Chandraker其他文献
What an image reveals about material reflectance
图像揭示了材料反射率的哪些内容
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Manmohan Chandraker;R. Ramamoorthi - 通讯作者:
R. Ramamoorthi
Supplementary: A Theory of Topological Derivatives for Inverse Rendering of Geometry
补充:几何逆向绘制的拓扑导数理论
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ishit Mehta;Manmohan Chandraker;Ravi Ramamoorthi - 通讯作者:
Ravi Ramamoorthi
From pictures to 3D : global optimization for scene reconstruction
从图片到3D:场景重建的全局优化
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Manmohan Chandraker - 通讯作者:
Manmohan Chandraker
A Theory of Topological Derivatives for Inverse Rendering of Geometry
几何逆绘制的拓扑导数理论
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ishit Mehta;Manmohan Chandraker;R. Ramamoorthi - 通讯作者:
R. Ramamoorthi
Manmohan Chandraker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manmohan Chandraker', 18)}}的其他基金
RI: Small: Physically-Based Learning for Shape, Lighting and Material in Complex Indoor Scenes
RI:小型:复杂室内场景中形状、照明和材质的基于物理的学习
- 批准号:
2110409 - 财政年份:2021
- 资助金额:
$ 54.86万 - 项目类别:
Standard Grant
相似海外基金
Physically and biomechanically plausible human motion capture from video
从视频中捕捉物理和生物力学上合理的人体动作
- 批准号:
23KJ1915 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
- 批准号:
2244952 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Standard Grant
SCC-PG: Understanding the Technical and Social Challenges and Opportunities of Physically and Digitally Augmented Community Gardens
SCC-PG:了解物理和数字增强社区花园的技术和社会挑战和机遇
- 批准号:
2327014 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Standard Grant
Muscle-based Signals for Responsive Physically-Assistive Robotics
用于响应式物理辅助机器人的基于肌肉的信号
- 批准号:
LP220100417 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Linkage Projects
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
- 批准号:
2244953 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Standard Grant
Zoa-OS: A ditgitally and physically integrated end-to-end Operating System to offer any fashion brand sustainable clothing rental-as-a-service
Zoa-OS:数字和物理集成的端到端操作系统,可为任何时尚品牌提供可持续的服装租赁即服务
- 批准号:
10082300 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Collaborative R&D
Understanding the Potential of Physically Active Learning Implementation Within UK Secondary Schools
了解英国中学实施体育活动学习的潜力
- 批准号:
2879353 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Studentship
Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
- 批准号:
2229659 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Physically Unclonable Wireless Systems (PUWS) for RF Fingerprinting and Physical Layer Security
SaTC:核心:中:用于射频指纹识别和物理层安全的物理不可克隆无线系统 (PUWS)
- 批准号:
2233774 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别:
Standard Grant
Harnessing the Kohler Effect to Promote Motor Learning During Physically Assisted Rehabilitation
利用科勒效应促进物理辅助康复期间的运动学习
- 批准号:
10679557 - 财政年份:2023
- 资助金额:
$ 54.86万 - 项目类别: