CAREER: Biochemical Reaction Systems: from Structure to Dynamics

职业:生化反应系统:从结构到动力学

基本信息

  • 批准号:
    1752672
  • 负责人:
  • 金额:
    $ 41.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The project supported under this CAREER award will use the mathematics of networks to understand how living cells maintain a healthy balance of nutrients, like iron. In healthy cells, many chemical reactions take place all the time. Scientists think of these reactions as forming a network, like a wiring diagram, with connecting wires describing the movement of nutrients and metabolites through a cell's chemical reactions. Knowing the entire wiring diagram is not necessary for understanding the fate of individual nutrients, but the many interconnected circuits make it difficult to isolate only the part of the diagram important for certain activities, such as maintaining iron levels. This research will use mathematical techniques (specifically, algebraic geometry and dynamical systems) to find the simplest components in a reaction network that allow a cell to exhibit observed behaviors. Results will be tested using laboratory observations of how yeast cells manage and transport iron. Complementing the research projects will be educational activities centered around a Directed Reading Program in which undergraduate students will gain experience reading and presenting mathematics with the help of graduate-student mentors.The dynamics observed in living systems is much more than the sum of its parts. Systems biology, therefore, seeks to understand how biological components come together to generate emergent, systems-level behavior. A current bottleneck in systems biology is the lack of mathematical theory relating system structure to emergent behavior. Accordingly, this project will develop a theory of reaction systems tailored to biological networks. The investigator will build on her recent work that has helped clarify how bistability and other phenomena emerge in real-life systems. The aims here are to discover new criteria for multistationarity in reaction systems, and to answer the question of when Hopf bifurcations are preserved when new components are added to a network. These results will be used to answer important biological questions pertaining to how cells process information and how iron levels are maintained within cells. Specifically, the aims are to investigate the capacity for bistability and oscillations in phosphorylation networks, and to determine which components of iron-trafficking networks keep cellular-iron levels tightly regulated. Overall, the research will generate results well-suited to analyzing a large class of networks arising in living systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使用网络的数学来理解活细胞如何维持健康的营养平衡,比如铁。在健康细胞中,许多化学反应每时每刻都在发生。科学家们认为,这些反应形成了一个网络,就像接线图一样,通过连接线描述细胞化学反应中营养物质和代谢物的运动。了解整个接线图对于了解单个营养素的命运是没有必要的,但是许多相互连接的电路使得仅隔离对某些活动(如维持铁水平)重要的部分变得困难。这项研究将使用数学技术(特别是代数几何和动力系统)来找到反应网络中最简单的组件,这些组件允许细胞表现出观察到的行为。结果将使用酵母细胞如何管理和运输铁的实验室观察进行测试。与研究项目相辅相成的是以指导阅读计划为中心的教育活动,在该计划中,本科生将在研究生导师的帮助下获得阅读和展示数学的经验。在生命系统中观察到的动力学远不止其各部分的总和。因此,系统生物学试图理解生物成分如何聚集在一起产生紧急的系统级行为。系统生物学目前的一个瓶颈是缺乏将系统结构与突现行为联系起来的数学理论。因此,该项目将发展一种适合生物网络的反应系统理论。这位研究者将在她最近的研究基础上进一步阐明双稳性和其他现象是如何在现实系统中出现的。这里的目的是发现反应系统多平稳的新准则,并回答当新组分加入网络时Hopf分岔何时保留的问题。这些结果将用于回答有关细胞如何处理信息以及细胞内铁水平如何维持的重要生物学问题。具体来说,目的是研究磷酸化网络的双稳定性和振荡能力,并确定铁运输网络的哪些组成部分严格调节细胞铁水平。总的来说,这项研究将产生非常适合于分析生命系统中产生的大型网络的结果。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Absolute Concentration Robustness in Networks with Low-Dimensional Stoichiometric Subspace
低维化学计量子空间网络中的绝对浓度鲁棒性
  • DOI:
    10.1007/s10013-021-00524-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Meshkat, Nicolette;Shiu, Anne;Torres, Angelica
  • 通讯作者:
    Torres, Angelica
Oscillations and bistability in a model of ERK regulation
ERK 调节模型中的振荡和双稳态
  • DOI:
    10.1007/s00285-019-01402-y
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Obatake, Nida;Shiu, Anne;Tang, Xiaoxian;Torres, Angélica
  • 通讯作者:
    Torres, Angélica
Identifiability of linear compartmental models: the effect of moving inputs, outputs, and leaks
  • DOI:
    10.1080/03081087.2020.1812497
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Gerberding, Seth;Obatake, Nida;Shiu, Anne
  • 通讯作者:
    Shiu, Anne
Neural codes and the factor complex
神经编码和因子复合体
  • DOI:
    10.1016/j.aam.2019.101977
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Ruys de Perez, Alexander;Matusevich, Laura Felicia;Shiu, Anne
  • 通讯作者:
    Shiu, Anne
Identifiability of linear compartmental tree models and a general formula for input-output equations
  • DOI:
    10.1016/j.aam.2023.102490
  • 发表时间:
    2023-02-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Bortner,Cashous;Gross,Elizabeth;Sullivant,Seth
  • 通讯作者:
    Sullivant,Seth
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Shiu其他文献

Three Counterexamples on Semi-graphoids
半图形体的三个反例
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Hemmecke;Jason Morton;Anne Shiu;B. Sturmfels;Oliver Wienand
  • 通讯作者:
    Oliver Wienand
Statistical Applications in Genetics and Molecular Biology The Cyclohedron Test for Finding Periodic Genes in Time Course Expression Studies
遗传学和分子生物学中的统计应用在时间过程表达研究中寻找周期性基因的环面体检验
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Pachter;Anne Shiu;B. Sturmfels
  • 通讯作者:
    B. Sturmfels
Identifiability of Linear Compartmental Models: The Impact of Removing Leaks and Edges
线性房室模型的可识别性:消除泄漏和边缘的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Chan;Kate Johnston;Anne Shiu;Aleksandra Sobieska;C. Spinner
  • 通讯作者:
    C. Spinner
Convex Rank Tests and Semigraphoids
凸秩检验和半形图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Jason Morton;L. Pachter;Anne Shiu;B. Sturmfels;Oliver Wienand
  • 通讯作者:
    Oliver Wienand
IDENTIFIABILITY OF LINEAR COMPARTMENT MODELS 3 Model Equation of singular locus
线性室模型的可辨识性 3 奇异轨迹模型方程
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Gross;N. Meshkat;Anne Shiu
  • 通讯作者:
    Anne Shiu

Anne Shiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Shiu', 18)}}的其他基金

REU Site: Undergraduate Research in the Mathematical Sciences and their Applications
REU 网站:数学科学及其应用的本科研究
  • 批准号:
    2150094
  • 财政年份:
    2022
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant
REU Site: Undergraduate Research in the Mathematical Sciences and their Applications
REU 网站:数学科学及其应用的本科研究
  • 批准号:
    1757872
  • 财政年份:
    2018
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant
REU Site: Undergraduate Research in the Mathematical Sciences and their Applications
REU 网站:数学科学及其应用的本科研究
  • 批准号:
    1460766
  • 财政年份:
    2015
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
Biochemical reaction systems: multistationarity, persistence, and identifiability
生化反应系统:多平稳性、持久性和可识别性
  • 批准号:
    1513364
  • 财政年份:
    2014
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
Biochemical reaction systems: multistationarity, persistence, and identifiability
生化反应系统:多平稳性、持久性和可识别性
  • 批准号:
    1312473
  • 财政年份:
    2013
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004380
  • 财政年份:
    2010
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Fellowship Award

相似海外基金

Creation of nano-biochemical reaction platform using hydrated polymer brush thin film
利用水合聚合物刷薄膜创建纳米生化反应平台
  • 批准号:
    23K17717
  • 财政年份:
    2023
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Creation of biochemical reaction field for target specific reaction in cellulo, by synthetic chromatin liquid-liquid phase separation
通过合成染色质液-液相分离,为纤维素中的目标特异性反应创建生化反应场
  • 批准号:
    22KJ0929
  • 财政年份:
    2023
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2022
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2020
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    DGECR-2019-00215
  • 财政年份:
    2019
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Launch Supplement
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2019
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Grants Program - Individual
Biochemical approaches to understanding the reaction platforms of the piRNA pathway
了解 piRNA 途径反应平台的生化方法
  • 批准号:
    18H05271
  • 财政年份:
    2018
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Identification of Metabolic Phenotypes and Systemic Biochemical Reaction Networks Associated with Human Blood Pressure
与人体血压相关的代谢表型和全身生化反应网络的鉴定
  • 批准号:
    MR/S004033/1
  • 财政年份:
    2018
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Fellowship
Construction of novel self-oscillating polymer systems utilizing biochemical reaction
利用生化反应构建新型自振荡聚合物系统
  • 批准号:
    17K19148
  • 财政年份:
    2017
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了