CAREER: First-Principles Predictive Theory and Microscopic Understanding of Nonlinear Light-Matter Interactions towards Designer Nonlinear Optical Materials
职业:设计非线性光学材料的非线性光与物质相互作用的第一原理预测理论和微观理解
基本信息
- 批准号:1753054
- 负责人:
- 金额:$ 43.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe Division of Materials Research and the Office of Advanced Cyberinfrastructure contribute funds to this CAREER award. This award supports an integrated research and education effort on developing and applying computational methods for understanding how nonlinear optical materials respond to light. How nonlinear optical materials respond to light depends on the intensity of the light which leads to interesting phenomena that can be used in technological applications. For example, the dependence of the index of refraction on light intensity can cause a nonlinear optical material to function like a lens causing a light beam to narrow or collapse as it passes through the material. These materials have applications in, for example, noninvasive imaging for medicine, optoelectronic devices, and advanced sensitive quantum mechanical sensors. Understanding and accurate prediction of strong light-matter interaction at microscopic level would help enable the design of novel materials with tailored nonlinear optical properties for specific applications.The goal of this project is to develop and apply methods that starting from knowing the identity of the constituent atoms to predict how specific nonlinear optical materials will respond to light. Emphasis will be placed on novel two-dimensional materials and topological materials which can have metallic states with exotic properties that cover surfaces and edges of the material. This work will elucidate the fundamental role of symmetry, topology, surface/edge, and spin-orbit coupling in nonlinear light-matter interactions. The results obtained from this work will also help generate design principles for nonlinear optical materials and nanostructures. The methods and data acquired will be broadly disseminated to the scientific community, industry, and the general public through open-source distributions.To integrate outreach and education with the research, the PI will host and train high-school students from under-represented groups and secondary school teachers in scientific computing and simulations during summers. The PI will also integrate the research into undergraduate and graduate curricula, provide multidisciplinary training to undergraduate and graduate students, disseminate computational tools in computational materials science summer schools, and promote women in materials science and engineering through seminar series. The graduate students working on this project will acquire an interdisciplinary background in physics, materials science, and high-performance computing. The computer codes and data generated will be shared with the public to benefit the education and outreach in the community. TECHNICAL SUMMARYThe Division of Materials Research and the Office of Advanced Cyberinfrastructure contribute funds to this CAREER award. This award supports an integrated research and education effort on developing and applying predictive first-principles methods for understanding nonlinear optical responses of materials. Materials and nanostructures with tailored nonlinear optical properties are not only important for understanding, probing, and ultimately controlling light-matter interaction at the nanoscale, but highly desirable for many applications such as ultrafast nonlinear optics, biosensing, all-optical transistor and computer, and optical quantum teleportation, communication, and computing. Recently, giant nonlinear optical processes such as second and third harmonic generation were discovered in two-dimensional crystals and topological materials, which challenges the current understanding and requires fundamental investigation at the microscopic level. The goal of this project is to advance fundamental understanding and theoretical prediction of nonlinear light-matter interaction in materials. The research will focus on developing and applying first-principles density-functional-based methods and approaches to investigate and eventually predict second and third order nonlinear optical responses of materials. Spin-orbit coupling, crystalline symmetry, causality, electron-hole interaction, quasiparticle energy, and quasiparticle lifetime due to carrier-carrier and carrier-phonon interactions will be included in this first-principles theoretical framework. Particular emphasis will be placed on elucidating the role of symmetry, electronic topology, surface/edge, and spin-orbit coupling in two-dimensional materials and topological materials. The results obtained will generate new knowledge of nonlinear optical processes and contribute materials design principles for control of light-matter interactions.To integrate outreach and education with the research, the PI will host and train high-school students from under-represented groups and secondary school teachers in scientific computing and simulations during summers to motivate the aspiration and curiosity of the students in science and engineering. The PI will also integrate the research into undergraduate and graduate curricula, provide multidisciplinary training to undergraduate and graduate students, disseminate the developed computational tools in computational materials science summer schools, and promote women in materials science and engineering through seminar series. The graduate students working on this project will acquire a solid interdisciplinary background in physics, materials science, and high-performance computing. In addition, the computational methods, codes, and data generated from this project will be broadly disseminated to the scientific community, the industry, and the general public through open-source distributions with the intent to benefit the broader research, education, and outreach in the community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结材料研究部和高级网络基础设施办公室为该职业奖贡献了资金。该奖项支持一项综合的研究和教育工作,以开发和应用计算方法,以了解非线性光学材料对光线的反应。非线性光学材料对光的反应如何取决于光的强度,这导致了可以在技术应用中使用的有趣现象。例如,折射指数对光强度的依赖性会导致非线性光学材料像镜头一样起作用,从而导致光束在穿过材料时狭窄或塌陷。这些材料在医学,光电设备和高级敏感量子机械传感器中的无创成像中具有应用。在微观水平上了解和准确预测强烈的光结合的相互作用将有助于实现针对特定应用的量身定制的非线性光学特性的新型材料的设计。该项目的目标是开发和应用方法,从了解组成原子的身份开始,以预测特定的非线性光学材料对光线有何响应。 重点将放在新颖的二维材料和拓扑材料上,这些材料和拓扑材料具有具有外在特性的金属状态,覆盖了材料的表面和边缘。这项工作将阐明非线性光 - 物质相互作用中对称性,拓扑,表面/边缘和自旋轨道耦合的基本作用。从这项工作中获得的结果还将有助于生成非线性光学材料和纳米结构的设计原理。所采用的方法和数据将通过开源分布广泛地传播到科学界,行业和公众。为了将外展和教育与研究整合,PI将在夏季的科学计算和模拟中托管和培训来自代表性不足的小组和中学教师的高中生。 PI还将将研究整合到本科和研究生课程中,为本科生和研究生提供多学科培训,在计算材料暑期学校中传播计算工具,并通过研讨会系列促进材料科学和工程女性。从事该项目的研究生将获得物理,材料科学和高性能计算的跨学科背景。生成的计算机代码和数据将与公众共享,以使社区中的教育和宣传受益。技术总结材料研究部和高级网络基础设施办公室为该职业奖贡献了资金。该奖项支持综合研究和教育工作,用于开发和应用预测性的第一原理方法,以了解材料的非线性光学响应。具有量身定制的非线性光学特性的材料和纳米结构不仅对于纳米级的理解,探测和最终控制光结合的相互作用都很重要,而且对于许多应用,例如超级非线性光学,生物传感,全光跨性和计算机和计算机,以及光学量子量子传递,通信和计算机。最近,在二维晶体和拓扑材料中发现了巨大的非线性光学过程,例如第二和第三次谐波产生,这挑战了当前的理解,并需要在微观水平上进行基本研究。该项目的目的是提高对材料中非线性光 - 物质相互作用的基本理解和理论预测。该研究将着重于开发和应用基于第一原理的基于密度功能的方法和方法,以调查并最终预测材料的二阶和三阶非线性光学响应。自旋轨道耦合,晶体对称性,因果关系,电子孔相互作用,准粒子能量以及由于载体 - 载体和载体 - phonon相互作用而导致的载体寿命,将包括在这个第一原则的理论框架中。特别强调将阐明在二维材料和拓扑材料中的对称性,电子拓扑,表面/边缘和自旋轨道耦合的作用。获得的结果将产生有关非线性光学过程的新知识,并为控制光结合互动的控制材料设计原理。为了将外展和教育与研究整合在一起,PI将主持和培训来自代表性不足的团体和中学教师的高中生,以及在夏季进行科学计算和模拟的中学教师,以激励科学和演奏学生的志向和库里斯特学生。 PI还将将研究纳入本科和研究生课程,为本科生和研究生提供多学科培训,在计算材料科学暑期学校中传播开发的计算工具,并通过研讨会系列在材料科学和工程领域促进女性。从事该项目的研究生将获得物理,材料科学和高性能计算的稳固跨学科背景。此外,该项目产生的计算方法,代码和数据将通过开放式分布广泛地传播给科学界,行业和公众,以使社区中的更广泛的研究,教育和外向有益于该奖项,该奖项反映了NSF的法定任务,并通过评估了基金会的智力效果,并通过评估了基金会的范围和广泛的范围。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correlations and incipient antiferromagnetic order within the linear Mn chains of metallic Ti4MnBi2
- DOI:10.1103/physrevb.102.014406
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Pandey A;Miao P;Klemm M;He H;Wang H;Qian X;Lynn JW;Aronson MC
- 通讯作者:Aronson MC
Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots
- DOI:10.1021/acsnano.8b06649
- 发表时间:2018-12-01
- 期刊:
- 影响因子:17.1
- 作者:Rossi, Daniel;Wang, Hua;Son, Dong Hee
- 通讯作者:Son, Dong Hee
Interfacial Superconductivity Achieved in Parent AEFe 2 As 2 (AE = Ca, Sr, Ba) by a Simple and Realistic Annealing Route
通过简单而现实的退火路线在母体 AEFe 2 As 2 (AE = Ca, Sr, Ba) 中实现界面超导
- DOI:10.1021/acs.nanolett.0c04995
- 发表时间:2021
- 期刊:
- 影响因子:10.8
- 作者:Huyan, Shuyuan;Lyu, Yanfeng;Wang, Hua;Deng, Liangzi;Wu, Zheng;Lv, Bing;Zhao, Kui;Tian, Fei;Gao, Guanhui;Liu, Rui-Zhe
- 通讯作者:Liu, Rui-Zhe
Berry curvature memory through electrically driven stacking transitions
- DOI:10.1038/s41567-020-0947-0
- 发表时间:2020-06-29
- 期刊:
- 影响因子:19.6
- 作者:Xiao, Jun;Wang, Ying;Lindenberg, Aaron M.
- 通讯作者:Lindenberg, Aaron M.
Generalized Wilson loop method for nonlinear light-matter interaction
- DOI:10.1038/s41535-022-00472-4
- 发表时间:2022-06
- 期刊:
- 影响因子:5.7
- 作者:Hua Wang;Xiuyu Tang;Haowei Xu;Ju Li;Xiaofeng Qian
- 通讯作者:Hua Wang;Xiuyu Tang;Haowei Xu;Ju Li;Xiaofeng Qian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Qian其他文献
A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji - 通讯作者:
Shuiwang Ji
Mild Oxidation of Toluene to Benzaldehyde by Air
甲苯在空气中轻度氧化为苯甲醛
- DOI:
10.1021/acs.iecr.2c03967 - 发表时间:
2022-12 - 期刊:
- 影响因子:0
- 作者:
Changshun Deng;Kai Wang;Xiaofeng Qian;Jun Yao;Nianhua Xue;Luming Peng;Xuefeng Guo;Yan Zhu;Weiping Ding - 通讯作者:
Weiping Ding
First-principles investigation of organic photovoltaic materials C-60, C-70, [C-60]PCBM, and bis-[C-60]PCBM using a many-body G(0)W(0)-Lanczos approach
使用多体 G(0)W(0)-Lanczos 方法对有机光伏材料 C-60、C-70、[C-60]PCBM 和双-[C-60]PCBM 进行第一性原理研究
- DOI:
10.1103/physrevb.91.245105 - 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Xiaofeng Qian;P. Umari;N. Marzari - 通讯作者:
N. Marzari
Electronic structure and transport in molecular and nanoscale electronics
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Qian - 通讯作者:
Xiaofeng Qian
Electric field control of molecular magnetic state by two-dimensional ferroelectric heterostructure engineering
二维铁电异质结构工程对分子磁态的电场控制
- DOI:
10.1063/5.0012039 - 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
Ziye Zhu;Baiyu Zhang;Xiaofang Chen;Xiaofeng Qian;Jingshan Qi - 通讯作者:
Jingshan Qi
Xiaofeng Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Qian', 18)}}的其他基金
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
- 批准号:
2226908 - 财政年份:2023
- 资助金额:
$ 43.95万 - 项目类别:
Standard Grant
LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
- 批准号:
2316878 - 财政年份:2023
- 资助金额:
$ 43.95万 - 项目类别:
Standard Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103842 - 财政年份:2021
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
相似国自然基金
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光自敏化驱动芳香类新污染物降解新途径的第一性原理研究
- 批准号:22376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
共掺实现闪烁体性能调控的第一性原理研究
- 批准号:12304445
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Janus磁性材料的二维多铁隧道结的第一性原理研究
- 批准号:12304121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型二维碲基和硒基材料结构预测和体光伏效应的第一性原理研究
- 批准号:12304083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
- 批准号:
2342876 - 财政年份:2023
- 资助金额:
$ 43.95万 - 项目类别:
Continuing Grant