CAREER: First-Principles Predictive Theory and Microscopic Understanding of Nonlinear Light-Matter Interactions towards Designer Nonlinear Optical Materials

职业:设计非线性光学材料的非线性光与物质相互作用的第一原理预测理论和微观理解

基本信息

  • 批准号:
    1753054
  • 负责人:
  • 金额:
    $ 43.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Office of Advanced Cyberinfrastructure contribute funds to this CAREER award. This award supports an integrated research and education effort on developing and applying computational methods for understanding how nonlinear optical materials respond to light. How nonlinear optical materials respond to light depends on the intensity of the light which leads to interesting phenomena that can be used in technological applications. For example, the dependence of the index of refraction on light intensity can cause a nonlinear optical material to function like a lens causing a light beam to narrow or collapse as it passes through the material. These materials have applications in, for example, noninvasive imaging for medicine, optoelectronic devices, and advanced sensitive quantum mechanical sensors. Understanding and accurate prediction of strong light-matter interaction at microscopic level would help enable the design of novel materials with tailored nonlinear optical properties for specific applications.The goal of this project is to develop and apply methods that starting from knowing the identity of the constituent atoms to predict how specific nonlinear optical materials will respond to light. Emphasis will be placed on novel two-dimensional materials and topological materials which can have metallic states with exotic properties that cover surfaces and edges of the material. This work will elucidate the fundamental role of symmetry, topology, surface/edge, and spin-orbit coupling in nonlinear light-matter interactions. The results obtained from this work will also help generate design principles for nonlinear optical materials and nanostructures. The methods and data acquired will be broadly disseminated to the scientific community, industry, and the general public through open-source distributions.To integrate outreach and education with the research, the PI will host and train high-school students from under-represented groups and secondary school teachers in scientific computing and simulations during summers. The PI will also integrate the research into undergraduate and graduate curricula, provide multidisciplinary training to undergraduate and graduate students, disseminate computational tools in computational materials science summer schools, and promote women in materials science and engineering through seminar series. The graduate students working on this project will acquire an interdisciplinary background in physics, materials science, and high-performance computing. The computer codes and data generated will be shared with the public to benefit the education and outreach in the community. TECHNICAL SUMMARYThe Division of Materials Research and the Office of Advanced Cyberinfrastructure contribute funds to this CAREER award. This award supports an integrated research and education effort on developing and applying predictive first-principles methods for understanding nonlinear optical responses of materials. Materials and nanostructures with tailored nonlinear optical properties are not only important for understanding, probing, and ultimately controlling light-matter interaction at the nanoscale, but highly desirable for many applications such as ultrafast nonlinear optics, biosensing, all-optical transistor and computer, and optical quantum teleportation, communication, and computing. Recently, giant nonlinear optical processes such as second and third harmonic generation were discovered in two-dimensional crystals and topological materials, which challenges the current understanding and requires fundamental investigation at the microscopic level. The goal of this project is to advance fundamental understanding and theoretical prediction of nonlinear light-matter interaction in materials. The research will focus on developing and applying first-principles density-functional-based methods and approaches to investigate and eventually predict second and third order nonlinear optical responses of materials. Spin-orbit coupling, crystalline symmetry, causality, electron-hole interaction, quasiparticle energy, and quasiparticle lifetime due to carrier-carrier and carrier-phonon interactions will be included in this first-principles theoretical framework. Particular emphasis will be placed on elucidating the role of symmetry, electronic topology, surface/edge, and spin-orbit coupling in two-dimensional materials and topological materials. The results obtained will generate new knowledge of nonlinear optical processes and contribute materials design principles for control of light-matter interactions.To integrate outreach and education with the research, the PI will host and train high-school students from under-represented groups and secondary school teachers in scientific computing and simulations during summers to motivate the aspiration and curiosity of the students in science and engineering. The PI will also integrate the research into undergraduate and graduate curricula, provide multidisciplinary training to undergraduate and graduate students, disseminate the developed computational tools in computational materials science summer schools, and promote women in materials science and engineering through seminar series. The graduate students working on this project will acquire a solid interdisciplinary background in physics, materials science, and high-performance computing. In addition, the computational methods, codes, and data generated from this project will be broadly disseminated to the scientific community, the industry, and the general public through open-source distributions with the intent to benefit the broader research, education, and outreach in the community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结材料研究部和高级网络基础设施办公室为该职业奖提供资金。该奖项支持在开发和应用计算方法以了解非线性光学材料对光的响应方面的综合研究和教育工作。非线性光学材料对光的响应取决于光的强度,这导致了可用于技术应用的有趣现象。例如,折射率对光强度的依赖性可导致非线性光学材料起到类似于透镜的作用,从而导致光束在穿过该材料时变窄或塌陷。这些材料在例如医学的非侵入性成像、光电器件和先进的灵敏量子力学传感器中具有应用。在微观水平上理解和准确预测强的光-物质相互作用将有助于设计具有特定应用的非线性光学性质的新型材料。本项目的目标是开发和应用从知道组成原子的身份开始预测特定非线性光学材料对光的响应的方法。 重点将放在新的二维材料和拓扑材料,可以有金属状态与异国情调的性质,覆盖表面和边缘的材料。这项工作将阐明对称性,拓扑结构,表面/边缘和自旋轨道耦合在非线性光-物质相互作用中的基本作用。从这项工作中获得的结果也将有助于产生非线性光学材料和纳米结构的设计原则。所获得的方法和数据将通过开源分发方式向科学界、工业界和公众广泛传播。为了将推广和教育与研究相结合,PI将在夏季举办并培训来自代表性不足群体的高中学生和中学教师进行科学计算和模拟。PI还将把研究纳入本科和研究生课程,为本科生和研究生提供多学科培训,在计算材料科学暑期学校传播计算工具,并通过系列研讨会促进妇女参与材料科学和工程。从事该项目的研究生将获得物理学,材料科学和高性能计算的跨学科背景。所产生的计算机代码和数据将与公众分享,以利于社区的教育和外展。材料研究部和高级网络基础设施办公室为该职业奖提供资金。该奖项支持在开发和应用预测性第一原理方法以理解材料的非线性光学响应方面的综合研究和教育工作。具有定制的非线性光学性质的材料和纳米结构不仅对于理解、探测和最终控制纳米尺度下的光-物质相互作用非常重要,而且对于许多应用,如超快非线性光学、生物传感、全光晶体管和计算机以及光量子隐形传态、通信和计算,都是非常理想的。近年来,在二维晶体和拓扑材料中发现了诸如二次谐波和三次谐波等巨大的非线性光学过程,这对目前的理解提出了挑战,需要在微观水平上进行基础研究。该项目的目标是推进对材料中非线性光物质相互作用的基本理解和理论预测。该研究将侧重于开发和应用基于密度泛函的第一性原理方法和途径来研究并最终预测材料的二阶和三阶非线性光学响应。自旋轨道耦合,晶体对称性,因果关系,电子-空穴相互作用,准粒子能量和准粒子寿命由于载流子-载流子和载流子-声子相互作用将包括在这个第一性原理的理论框架。特别强调将放在阐明对称性,电子拓扑结构,表面/边缘和自旋轨道耦合在二维材料和拓扑材料中的作用。研究结果将为非线性光学过程提供新的知识,并为控制光-物质相互作用提供材料设计原理。为了将推广和教育与研究相结合,PI将在夏季举办并培训来自代表性不足群体的高中学生和中学教师进行科学计算和模拟,以激发学生对科学和工程的渴望和好奇心。PI还将把研究纳入本科和研究生课程,为本科生和研究生提供多学科培训,在计算材料科学暑期学校传播开发的计算工具,并通过系列研讨会促进妇女参与材料科学和工程。从事该项目的研究生将获得物理学,材料科学和高性能计算方面的坚实的跨学科背景。此外,该项目产生的计算方法,代码和数据将通过开源分发广泛传播给科学界,工业界和公众,旨在使更广泛的研究,教育,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correlations and incipient antiferromagnetic order within the linear Mn chains of metallic Ti4MnBi2
  • DOI:
    10.1103/physrevb.102.014406
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pandey A;Miao P;Klemm M;He H;Wang H;Qian X;Lynn JW;Aronson MC
  • 通讯作者:
    Aronson MC
Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots
  • DOI:
    10.1021/acsnano.8b06649
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Rossi, Daniel;Wang, Hua;Son, Dong Hee
  • 通讯作者:
    Son, Dong Hee
Interfacial Superconductivity Achieved in Parent AEFe 2 As 2 (AE = Ca, Sr, Ba) by a Simple and Realistic Annealing Route
通过简单而现实的退火路线在母体 AEFe 2 As 2 (AE = Ca, Sr, Ba) 中实现界面超导
  • DOI:
    10.1021/acs.nanolett.0c04995
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Huyan, Shuyuan;Lyu, Yanfeng;Wang, Hua;Deng, Liangzi;Wu, Zheng;Lv, Bing;Zhao, Kui;Tian, Fei;Gao, Guanhui;Liu, Rui-Zhe
  • 通讯作者:
    Liu, Rui-Zhe
Berry curvature memory through electrically driven stacking transitions
  • DOI:
    10.1038/s41567-020-0947-0
  • 发表时间:
    2020-06-29
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Xiao, Jun;Wang, Ying;Lindenberg, Aaron M.
  • 通讯作者:
    Lindenberg, Aaron M.
Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials
  • DOI:
    10.1038/s41524-020-00462-9
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Hua Wang;Xiaofeng Qian
  • 通讯作者:
    Hua Wang;Xiaofeng Qian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofeng Qian其他文献

A Space Group Symmetry Informed Network for O(3) Equivariant Crystal Tensor Prediction
用于 O(3) 等变晶体张量预测的空间群对称信息网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keqiang Yan;Alexandra Saxton;Xiaofeng Qian;Xiaoning Qian;Shuiwang Ji
  • 通讯作者:
    Shuiwang Ji
True random number generation using the spin crossover in LaCoO3
利用 LaCoO3 中的自旋交叉实现真正的随机数生成
  • DOI:
    10.1038/s41467-024-49149-5
  • 发表时间:
    2024-05-31
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Kyung Seok Woo;Alan Zhang;Allison Arabelo;Timothy D. Brown;Minseong Park;A. Alec Talin;Elliot J. Fuller;Ravindra Singh Bisht;Xiaofeng Qian;Raymundo Arroyave;Shriram Ramanathan;Luke Thomas;R. Stanley Williams;Suhas Kumar
  • 通讯作者:
    Suhas Kumar
Mild Oxidation of Toluene to Benzaldehyde by Air
甲苯在空气中轻度氧化为苯甲醛
  • DOI:
    10.1021/acs.iecr.2c03967
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changshun Deng;Kai Wang;Xiaofeng Qian;Jun Yao;Nianhua Xue;Luming Peng;Xuefeng Guo;Yan Zhu;Weiping Ding
  • 通讯作者:
    Weiping Ding
Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2
少层 WTe2 中的铁电非线性反常霍尔效应
  • DOI:
    10.1038/s41524-019-0257-1
  • 发表时间:
    2019-12-06
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Hua Wang;Xiaofeng Qian
  • 通讯作者:
    Xiaofeng Qian
Kiosk 4R-FB-07 - Effects of Omicron Coronavirus Infection on Cardiac Structure and Function in Young Adults: A Population Study Using MRI
4R-FB-07 亭台 - Omicron 冠状病毒感染对年轻人心脏结构和功能的影响:一项使用 MRI 的人群研究
  • DOI:
    10.1016/j.jocmr.2024.100590
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Bowei Liu;Xiaofeng Qian;Rui Guo;Dongyue Si;Jiming Zhu;Xihai Zhao;Haiyan Ding
  • 通讯作者:
    Haiyan Ding

Xiaofeng Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofeng Qian', 18)}}的其他基金

Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226908
  • 财政年份:
    2023
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Quantum Simulation with Classical Optics
LEAPS-MPS:经典光学的量子模拟
  • 批准号:
    2316878
  • 财政年份:
    2023
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
  • 批准号:
    2103842
  • 财政年份:
    2021
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
  • 批准号:
    21908075
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
  • 批准号:
    2340765
  • 财政年份:
    2024
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
  • 批准号:
    2238328
  • 财政年份:
    2023
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
  • 批准号:
    2145144
  • 财政年份:
    2022
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2143233
  • 财政年份:
    2022
  • 资助金额:
    $ 43.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了