EAGER: Microscopic Deployment Algorithms to Achieve Macroscopic Objectives for Spatially Distributed Stochastic Networks of Mobile Agents

EAGER:实现移动代理空间分布式随机网络宏观目标的微观部署算法

基本信息

  • 批准号:
    1753687
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) project will study new ways to control large networks of mobile agents to accomplish a variety of tasks. The first challenge addressed by this project is to account for uncertainty in the position and velocity of each agent. This uncertainty can be caused by inaccurate measurements or imperfect communications. To capture uncertainty, this project uses probability distributions to quantify the collective behavior of all the agents. This is called the macroscopic description of the network. The second challenge addressed by this project is to find control laws that achieve a desired macroscopic behavior of the network, using only distributed algorithms and local information. That is, the project will find rules by which each agent will control its own velocity, based only on knowledge of a few neighboring agents, but in such a way that a desired macroscopic probability distribution is obtained. The local dynamic behavior of the individual agents is called the microscopic description of the network, and the goal of this project is to find rules for microscopic behavior that give rise to a desired macroscopic result. An example is the control of a large group of autonomous mobile robots that pick up and deliver packages across a wide geographic region. The macroscopic goal is that, for each point in the region, the probability density of a delivery robot being available should match the probability density that a package needs to be picked up. For large numbers of robots, it is impractical to achieve this macroscopic goal by controlling every individual robot from a single command center. Instead, to avoid prohibitive requirements for communication bandwidth, information storage, and data processing, the computational task should be distributed among the individual robots -- however, the individual robots can only share data with a few nearby units. The challenge addressed by this project is for the individual robots to plan their movements based only on this limited local exchange, in such a way that the entire network of robots spreads out across the delivery region in a pattern mirroring the customer demand. This project advances the national prosperity and helps to secure the national defense by improving the ability to control large networks of mobile robots for commercial applications such as package delivery, or security applications such as surveillance and interdiction.The macroscopic deployment problem is approached in three steps. The first step is to define a single fictitious agent that captures the macroscopic state of the multi-agent network. This is done by choosing the mean and the covariance of the individual states of all the constituent agents of the network to be the statistical quantities that determine the probability distribution of the state of the representative agent. Tools from stochastic optimal control theory are then applied to steer the network towards areas of high importance. The second step is to solve the microscopic deployment problem for the constituent agents of the network, by assigning tasks to different agents based on their suitability to accomplish these tasks. The proposed solution approach is based on a divide-and-conquer scheme that is centered around a special class of Voronoi-like spatial partitions (sub-divisions of the workspace of the multi-agent network). The expected outcomes of this effort will include 1) stochastic control algorithms for the solution of the macroscopic control problem, 2) partitioning algorithms for the computation of Voronoi-like subdivisions of the network's workspace, 3) distributed algorithms for the solution of the microscopic control problem that leverage the Voronoi-like partitions and Lloyd's algorithm. The third and final step is to validate the proposed algorithms via a set of experimental demonstrations that will take place at the facilities for robotics research at the PI's home department.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个早期概念的探索性研究资助(EAGER)项目将研究控制大型移动的代理网络以完成各种任务的新方法。该项目解决的第一个挑战是考虑每个代理的位置和速度的不确定性。这种不确定性可能是由不准确的测量或不完善的通信造成的。为了捕捉不确定性,该项目使用概率分布来量化所有代理的集体行为。这被称为网络的宏观描述。该项目解决的第二个挑战是找到控制律,仅使用分布式算法和本地信息来实现网络的期望宏观行为。也就是说,该项目将找到规则,每个代理将控制自己的速度,仅基于几个相邻代理的知识,但在这样一种方式,即获得所需的宏观概率分布。个体代理的局部动态行为被称为网络的微观描述,该项目的目标是找到微观行为的规则,从而产生所需的宏观结果。一个例子是控制一大群自主移动的机器人,这些机器人在广阔的地理区域内拾取和递送包裹。宏观目标是,对于区域中的每个点,递送机器人可用的概率密度应该匹配包裹需要被拾取的概率密度。对于大量的机器人来说,通过从单个命令中心控制每个机器人来实现这个宏观目标是不切实际的。相反,为了避免对通信带宽,信息存储和数据处理的限制性要求,计算任务应该在各个机器人之间分配-然而,各个机器人只能与附近的几个单元共享数据。该项目所面临的挑战是,单个机器人仅基于这种有限的本地交换来规划其移动,从而使整个机器人网络以反映客户需求的模式在交付区域中展开。本项目通过提高用于包裹递送等商业用途或监视、拦截等安全用途的大型移动的机器人网络的控制能力,促进国家繁荣,并有助于国防安全。宏观部署问题分三步进行。第一步是定义一个虚构的代理,捕捉多代理网络的宏观状态。这是通过选择网络的所有组成主体的个体状态的均值和协方差作为确定代表性主体的状态的概率分布的统计量来完成的。然后,应用随机最优控制理论的工具来引导网络走向高度重要的区域。第二步是通过根据不同代理完成任务的适合性将任务分配给不同代理,解决网络组成代理的微观部署问题。建议的解决方案是基于分而治之的计划,是围绕一个特殊的类Voronoi空间分区(细分的多智能体网络的工作空间)。这项工作的预期成果将包括1)随机控制算法的宏观控制问题的解决方案,2)分区算法的计算Voronoi的网络的工作空间的细分,3)分布式算法的微观控制问题的解决方案,利用Voronoi的分区和劳埃德算法。第三步也是最后一步是通过一系列实验验证所提出的算法,这些实验将在PI的家庭部门的机器人研究设施中进行。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Output Feedback Control of the Liouville Equation for Discrete-Time SISO Linear Systems
离散时间 SISO 线性系统刘维尔方程的动态输出反馈控制
Workspace Partitioning and Topology Discovery Algorithms for Heterogeneous Multiagent Networks
异构多代理网络的工作空间分区和拓扑发现算法
Finite-Horizon Separation-Based Covariance Control for Discrete-Time Stochastic Linear Systems
离散时间随机线性系统基于有限范围分离的协方差控制
Relay Pursuit of an Evader by a Heterogeneous Group of Pursuers using Potential Games
异质追击者群体利用势博弈对逃避者的接力追击
Greedy Finite-Horizon Covariance Steering for Discrete-Time Stochastic Nonlinear Systems Based on the Unscented Transform
基于无迹变换的离散时间随机非线性系统贪婪有限视野协方差引导
  • DOI:
    10.23919/acc45564.2020.9147505
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bakolas, Efstathios;Tsolovikos, Alexandros
  • 通讯作者:
    Tsolovikos, Alexandros
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Efstathios Bakolas其他文献

Efstathios Bakolas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Efstathios Bakolas', 18)}}的其他基金

Data-Driven Model Reduction and Real-Time Estimation and Control of Coherent Structures in Turbulent Flows
湍流中相干结构的数据驱动模型简化和实时估计与控制
  • 批准号:
    2052811
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Real-Time Trajectory Generation Algorithms for Uncertain Autonomous Systems Based on Gaussian Processes
合作研究:基于高斯过程的不确定自治系统实时轨迹生成算法
  • 批准号:
    1937957
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
NRI: FND: Efficient algorithms for safety guiding mobile robots through spaces populated by humans and mobile intelligent machines and robots
NRI:FND:用于安全引导移动机器人穿过人类和移动智能机器和机器人居住的空间的高效算法
  • 批准号:
    1924790
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Optimal Path Planning Among Mobile Sources of Threat in Complex Environments
复杂环境下移动威胁源的最优路径规划
  • 批准号:
    1562339
  • 财政年份:
    2016
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似海外基金

Static and dynamic friction response of metallic nano-contacts by microscopic nanomechanical measurement
通过微观纳米力学测量金属纳米接触的静态和动态摩擦响应
  • 批准号:
    23H00255
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Bottom-up analysis of radiation microscopic transport
辐射微观传输的自下而上分析
  • 批准号:
    23K04635
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DORMOUSE: Detection Of Reflected Microscopic Optical UltraSound Emission
睡鼠:反射显微光学超声波发射的检测
  • 批准号:
    2891215
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Studentship
Microscopic description of nuclear fission based on the generator coordinate method
基于发生器坐标法的核裂变微观描述
  • 批准号:
    23KJ1212
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Construction of a platform for visualization of microscopic non-equilibrium states using super ptychography
利用超级叠层成像技术构建微观非平衡态可视化平台
  • 批准号:
    23H05403
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
  • 批准号:
    23K03274
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microscopic damage mechanisms focused on analogy between heat transfer properties and bonding strengths at composite interfaces
微观损伤机制侧重于复合材料界面传热特性和粘合强度之间的类比
  • 批准号:
    22KJ1603
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Rheology revealed by microscopic rotation: orientation fluctuations, friction and mechanics in colloidal gels
微观旋转揭示的流变学:胶体凝胶中的取向波动、摩擦和力学
  • 批准号:
    2226485
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
STTR Phase II: Stem Cell Delivery in Microscopic Hydrogel Droplets for Faster and More Complete Healing of Equine Tendon and Ligament Injuries
STTR 第二阶段:以微小水凝胶液滴形式输送干细胞,以更快、更完全地治愈马肌腱和韧带损伤
  • 批准号:
    2304324
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Cooperative Agreement
Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
  • 批准号:
    2311021
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了