Collaborative Research: Real-Time Trajectory Generation Algorithms for Uncertain Autonomous Systems Based on Gaussian Processes
合作研究:基于高斯过程的不确定自治系统实时轨迹生成算法
基本信息
- 批准号:1937957
- 负责人:
- 金额:$ 29.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will contribute new theory and algorithms for control and trajectory optimization problems for autonomous systems, such as mobile robots and autonomous vehicles, which are expected to have a significant positive impact on various aspects of national economy ranging from flexible transportation of goods by self-driving vehicles and robots to increased productivity and efficiency in manufacturing. This research will create algorithms and systematic methods to compute a collection of candidate trajectories or paths that will transfer an autonomous system to a corresponding collection of destinations instead of computing a single trajectory or path to a single destination. Having multiple alternative paths and corresponding destinations provides significant flexibility to the user. The latter point is consistent with every-day experience regarding the use of car navigation systems which often provide alternative routes with different times and traffic conditions in lieu of a single route. This paradigm shift in trajectory generation problems is motivated by the fact that in practice, it is hard for the user to accurately predict the future conditions at which a system will be operating (e.g., weather and traffic conditions) and thus committing to a single trajectory may not be ideal. One of the main bottlenecks in this class of problems is dealing with uncertainty in real-time (for instance, change in weather conditions may render certain candidate trajectories less suitable than others). The research team will create tractable model-based and data-driven algorithms which can be executed in real-time without compromising their ability to handle uncertainty. Finally, participation of undergraduate and underrepresented students will be encouraged through an array of research and teaching activities. The research will also have ramifications to other classes of control problems, including computational neuroscience and medicine and stochastic thermodynamical systems.This research effort will create scalable and real-time implementable trajectory generation algorithms for uncertain dynamical systems based on both model-based and data-driven stochastic optimal control methods. In this research, the boundary conditions correspond to probability distributions rather than fixed states. This class of stochastic trajectory generation problems admits in the most general case an infinite dimensional representation, which is computationally intractable. This research relies instead on finite dimensional representations in which the uncertainty is either represented explicitly using the framework of stochastic differential equations or indirectly by using generalized polynomial chaos theory. Variational integrators for both representations will be developed to achieve real time optimization and provide robustness to discretization errors. This research will also create data-driven (i.e., model-free) trajectory optimization algorithms, in which the time-evolution of the first two moments of the uncertain state of the system is described in terms of machine learning methods (i.e., Gaussian processes) which leverage data collected along the system’s ensuing trajectory. The theory and algorithms of this research will be validated by means of extensive simulations and experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该资助将为自主系统(如移动的机器人和自动驾驶汽车)的控制和轨迹优化问题提供新的理论和算法,预计这些理论和算法将对国民经济的各个方面产生重大的积极影响,从自动驾驶汽车和机器人灵活运输货物到提高生产率和制造效率。这项研究将创建算法和系统方法来计算候选轨迹或路径的集合,这些候选轨迹或路径将自动系统转移到相应的目的地集合,而不是计算到单个目的地的单个轨迹或路径。具有多个备选路径和对应的目的地为用户提供了显著的灵活性。后一点与关于使用汽车导航系统的日常经验一致,汽车导航系统通常提供具有不同时间和交通状况的替代路线,而不是单一路线。轨迹生成问题中的这种范式转变的动机是这样一个事实:在实践中,用户很难准确预测系统将运行的未来条件(例如,天气和交通状况),因此,致力于单一轨迹可能不是理想的。这类问题的主要瓶颈之一是实时处理不确定性(例如,天气条件的变化可能会使某些候选轨迹比其他轨迹更不适合)。研究团队将创建易于处理的基于模型和数据驱动的算法,这些算法可以实时执行,而不会影响处理不确定性的能力。最后,将通过一系列研究和教学活动鼓励本科生和代表性不足的学生参与。该研究还将对其他类型的控制问题产生影响,包括计算神经科学和医学以及随机神经系统。这项研究工作将为基于模型和数据驱动的随机最优控制方法的不确定动力系统创建可扩展和实时可实现的轨迹生成算法。在这项研究中,边界条件对应的概率分布,而不是固定的状态。这类随机轨迹生成问题承认在最一般的情况下,一个无限维的表示,这是计算上难以处理的。这项研究依赖于有限维表示,其中的不确定性是显式使用随机微分方程的框架或间接使用广义多项式混沌理论。将开发两种表示的变分积分器,以实现真实的时间优化,并提供对离散化误差的鲁棒性。这项研究还将创建数据驱动(即,无模型)轨迹优化算法,其中系统的不确定状态的前两个时刻的时间演化根据机器学习方法来描述(即,高斯过程),其利用沿着系统的后续轨迹沿着收集的数据。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constrained Covariance Steering Based Tube-MPPI
基于约束协方差控制的Tube-MPPI
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Balci, Isin. M;Bakolas, Eustatios;Vlahov, Bogda;Theodorou, Evangelos A.
- 通讯作者:Theodorou, Evangelos A.
Koopman Operator Based Modeling and Control of Rigid Body Motion Represented by Dual Quaternions
- DOI:10.23919/acc53348.2022.9867584
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Vrushabh Zinage;E. Bakolas
- 通讯作者:Vrushabh Zinage;E. Bakolas
Far-Field Minimum-Fuel Spacecraft Rendezvous using Koopman Operator and l 2 /l 1 Optimization
使用 Koopman 算子和 l 2 /l 1 优化的远场最小燃料航天器交会
- DOI:10.23919/acc50511.2021.9483173
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zinage, Vrushabh;Bakolas, Efstathios
- 通讯作者:Bakolas, Efstathios
Neural Koopman Lyapunov Control
- DOI:10.1016/j.neucom.2023.01.029
- 发表时间:2022-01
- 期刊:
- 影响因子:6
- 作者:Vrushabh Zinage;E. Bakolas
- 通讯作者:Vrushabh Zinage;E. Bakolas
Covariance Steering of Discrete-Time Linear Systems with Mixed Multiplicative and Additive Noise
具有混合乘性和加性噪声的离散时间线性系统的协方差导向
- DOI:10.23919/acc55779.2023.10156341
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Balci, Isin M.;Bakolas, Efstathios
- 通讯作者:Bakolas, Efstathios
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efstathios Bakolas其他文献
Efstathios Bakolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efstathios Bakolas', 18)}}的其他基金
Data-Driven Model Reduction and Real-Time Estimation and Control of Coherent Structures in Turbulent Flows
湍流中相干结构的数据驱动模型简化和实时估计与控制
- 批准号:
2052811 - 财政年份:2021
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
NRI: FND: Efficient algorithms for safety guiding mobile robots through spaces populated by humans and mobile intelligent machines and robots
NRI:FND:用于安全引导移动机器人穿过人类和移动智能机器和机器人居住的空间的高效算法
- 批准号:
1924790 - 财政年份:2019
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
EAGER: Microscopic Deployment Algorithms to Achieve Macroscopic Objectives for Spatially Distributed Stochastic Networks of Mobile Agents
EAGER:实现移动代理空间分布式随机网络宏观目标的微观部署算法
- 批准号:
1753687 - 财政年份:2018
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Optimal Path Planning Among Mobile Sources of Threat in Complex Environments
复杂环境下移动威胁源的最优路径规划
- 批准号:
1562339 - 财政年份:2016
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
- 批准号:
2324865 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226900 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly
合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制
- 批准号:
2317399 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
- 批准号:
2235976 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Japan-Germany collaborative research toward simultaneous real-time imaging of cancer pathology and radiotherapy effects
日德合作研究癌症病理和放射治疗效果同步实时成像
- 批准号:
23KK0206 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)