Optimal Path Planning Among Mobile Sources of Threat in Complex Environments

复杂环境下移动威胁源的最优路径规划

基本信息

  • 批准号:
    1562339
  • 负责人:
  • 金额:
    $ 27.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

This research effort will create novel algorithms for path planning and trajectory generation by a controlled mobile system operating in an environment populated by multiple mobile threats. These threats correspond to objects moving unpredictably, or possibly maliciously. The chosen worst-case approach models the mobile threats as pursuers actively and intelligently seeking a collision. The specific objective of the algorithm is to safely steer the controlled system to its destination, while minimizing the cumulative exposure to all threat sources. Accounting for all possible actions by all pursuers quickly results in a problem too large for even the most powerful computer. To make the calculations practical, the problem is divided into two parts -- first a short-term evasion strategy considering only the single most imminent threat, and second a long-term steering strategy with the goal of safely steering the controlled system to its goal destination while accounting for all threats. As air travel and automobile traffic become more autonomous, it becomes imperative for these systems to accommodate one or more uncommunicative, malfunctioning, or malicious agents. Finally, undergraduate and under-represented students will have the opportunity to work under the supervision of the PI in research projects related to the scope of this research effort via two different research programs which are offered every summer semester at the University of Texas at Austin.Problems of capture-evasion in the presence of multiple sources of threat are generally computationally intractable. This project approaches such problems using a combination of a short-term evasion strategy and a long-term steering strategy. The short-term strategy is based on a suitably defined threat metric, which is a state-dependent metric that measures the closeness of an evader from the highest-risk threat, while accounting for the dynamic and input constraints of both parties. The long-term strategy is primarily intended to steer the evader to its goal destination, while its cumulative exposure to every pursuer along its ensuing trajectory is kept low at all times. This project approaches these problems in the following stages: 1) Formulate the differential game describing multiple, potentially adversarial, decision makers as a path planning problem considering multiple mobile sources of threat. 2) Define a computationally tractable solution approach. 3) Leverage modern techniques such as sampling-based algorithms to address the path planning problem subject to non-trivial dynamic and input constraints, with time-varying state constraints to represent mobile obstacle. 4) Validate the solution to the capture-evasion problem by comparing its performance, in terms of the likelihood of the evader safely reaching its destination, against Monte Carlo simulations and other powerful but time-consuming numerical solution techniques.
这项研究工作将创建新的算法的路径规划和轨迹生成的控制移动的系统在一个环境中的人口由多个移动的威胁。这些威胁对应于不可预测或可能恶意移动的对象。所选择的最坏情况下的方法模型的移动的威胁的追求者积极和智能地寻求碰撞。该算法的具体目标是安全地将受控系统引导到其目的地,同时最大限度地减少对所有威胁源的累积暴露。考虑到所有追踪者的所有可能行动,即使是最强大的计算机也会很快产生一个太大的问题。为了使计算实用,该问题被分为两个部分-第一个短期规避策略,只考虑单一的最紧迫的威胁,第二个长期转向策略的目标是安全地引导控制系统到其目标目的地,同时考虑所有的威胁。随着航空旅行和汽车交通变得更加自主,这些系统必须容纳一个或多个无法通信、故障或恶意的代理。最后,本科生和代表性不足的学生将有机会在PI的监督下,通过两个不同的研究项目,在德克萨斯大学奥斯汀分校每个夏季学期提供与本研究工作的范围相关的研究项目。在存在多个威胁源的情况下,捕获逃避问题通常在计算上是棘手的。该项目采用短期规避策略和长期导向策略相结合的方法来解决这些问题。短期策略是基于一个适当定义的威胁度量,这是一个依赖于状态的度量,衡量最高风险威胁的规避者的接近程度,同时考虑到双方的动态和输入约束。长期策略的主要目的是引导逃避者到达目的地,同时使其对沿着每一个追踪者的累积暴露始终保持在较低水平。该项目在以下几个阶段处理这些问题:1)将描述多个潜在敌对决策者的微分博弈公式化为考虑多个移动的威胁源的路径规划问题。2)定义一个计算上易于处理的解决方案。3)利用现代技术,如基于采样的算法,以解决路径规划问题的非平凡的动态和输入约束,与时变状态约束,以代表移动的障碍。4)通过比较其性能,在逃避者安全到达目的地的可能性方面,与蒙特卡洛模拟和其他强大但耗时的数值求解技术,来验证捕获-逃避问题的解决方案。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Time-Optimal Guidance in a Partially Uncertain Time-Varying Flow-Field
部分不确定时变流场中的鲁棒时间最优引导
Evasion with terminal constraints from a group of pursuers using a matrix game formulation
使用矩阵博弈公式躲避一群追击者的终端约束
  • DOI:
    10.23919/acc.2017.7963182
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selvakumar, Jhanani;Bakolas, Efstathios
  • 通讯作者:
    Bakolas, Efstathios
Feedback Strategies for a Reach-Avoid Game With a Single Evader and Multiple Pursuers
具有单个逃避者和多个追赶者的避免触及博弈的反馈策略
  • DOI:
    10.1109/tcyb.2019.2914869
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Selvakumar, Jhanani;Bakolas, Efstathios
  • 通讯作者:
    Bakolas, Efstathios
Distributed Partitioning Algorithms for Locational Optimization of Multiagent Networks in SE(2)
SE中多智能体网络位置优化的分布式分区算法(2)
A pursuit-evasion game in the orbital plane
轨道平面上的追逃游戏
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Efstathios Bakolas其他文献

Efstathios Bakolas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Efstathios Bakolas', 18)}}的其他基金

Data-Driven Model Reduction and Real-Time Estimation and Control of Coherent Structures in Turbulent Flows
湍流中相干结构的数据驱动模型简化和实时估计与控制
  • 批准号:
    2052811
  • 财政年份:
    2021
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Real-Time Trajectory Generation Algorithms for Uncertain Autonomous Systems Based on Gaussian Processes
合作研究:基于高斯过程的不确定自治系统实时轨迹生成算法
  • 批准号:
    1937957
  • 财政年份:
    2020
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Standard Grant
NRI: FND: Efficient algorithms for safety guiding mobile robots through spaces populated by humans and mobile intelligent machines and robots
NRI:FND:用于安全引导移动机器人穿过人类和移动智能机器和机器人居住的空间的高效算法
  • 批准号:
    1924790
  • 财政年份:
    2019
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Standard Grant
EAGER: Microscopic Deployment Algorithms to Achieve Macroscopic Objectives for Spatially Distributed Stochastic Networks of Mobile Agents
EAGER:实现移动代理空间分布式随机网络宏观目标的微观部署算法
  • 批准号:
    1753687
  • 财政年份:
    2018
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Rough Path理论的分布依赖随机微分方程的平均化原理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于先进CMOS工艺的1-30GHz超宽带N-path滤波器研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带跳的 rough path 理论及其应用
  • 批准号:
    11901104
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
按蚊氨基酸运输蛋白PATH对蚊虫传播疟原虫能力的调控及机制研究
  • 批准号:
    81601793
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Energy-optimal path planning experiments for skid-steer rovers
滑移转向漫游车的能量最优路径规划实验
  • 批准号:
    551748-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 27.38万
  • 项目类别:
    University Undergraduate Student Research Awards
Transition optimization and orthogonal rows for optimal coverage path planning
用于最佳覆盖路径规划的过渡优化和正交行
  • 批准号:
    506711-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Optimal path-planning and direct adaptive control for vehicle proximity operations
车辆接近操作的最佳路径规划和直接自适应控制
  • 批准号:
    469958-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Engage Grants Program
Developing new optimal path planning methods using danger evaluation for safe human-robot interaction
使用危险评估开发新的最佳路径规划方法以实现安全的人机交互
  • 批准号:
    378166-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing new optimal path planning methods using danger evaluation for safe human-robot interaction
使用危险评估开发新的最佳路径规划方法以实现安全的人机交互
  • 批准号:
    378166-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing new optimal path planning methods using danger evaluation for safe human-robot interaction
使用危险评估开发新的最佳路径规划方法以实现安全的人机交互
  • 批准号:
    378166-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
1) Singular optimal control and minimum-time trajectories 2) Control and path planning for robot systems 3) Rational spline interpolation 4)Spirial waves in excitable media
1) 奇异最优控制和最短时间轨迹 2) 机器人系统的控制和路径规划 3) 有理样条插值 4) 可激发介质中的螺旋波
  • 批准号:
    5338-1993
  • 财政年份:
    1995
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Discovery Grants Program - Individual
1) Singular optimal control and minimum-time trajectories 2) Control and path planning for robot systems 3) Rational spline interpolation 4)Spirial waves in excitable media
1) 奇异最优控制和最短时间轨迹 2) 机器人系统的控制和路径规划 3) 有理样条插值 4) 可激励介质中的螺旋波
  • 批准号:
    5338-1993
  • 财政年份:
    1994
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Discovery Grants Program - Individual
1) Singular optimal control and minimum-time trajectories 2) Control and path planning for robot systems 3) Rational spline interpolation 4)Spirial waves in excitable media
1) 奇异最优控制和最短时间轨迹 2) 机器人系统的控制和路径规划 3) 有理样条插值 4) 可激发介质中的螺旋波
  • 批准号:
    5338-1993
  • 财政年份:
    1993
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Discovery Grants Program - Individual
Research Initiation: Time Optimal, Dynamic Path Planning and Control with Obstacle Avoidance for Robotic Manipulators
研究启动:机器人机械手的时间最优、动态路径规划和避障控制
  • 批准号:
    8505235
  • 财政年份:
    1985
  • 资助金额:
    $ 27.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了