CAREER: Efficient Learning of Personalized Strategies
职业:高效学习个性化策略
基本信息
- 批准号:1753968
- 负责人:
- 金额:$ 28.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Online retailers frequently provide tailored product or movie recommendations. But the power of automated personalization, driven by data and statistics, could be far greater: imagine the impact on poverty reduction if all children had a personalized, self-improving tutoring system as part of their education. To realize this vision requires personalization systems that reason about both the immediate impact of a recommended item (e.g. will a learner immediately learn from a video lecture) as well as its longer term impact. For example, a recommended item or intervention may cause a user to change his/her preferences, state of knowledge, or reveal information about the user that was previously unknown. This requires methods for creating personalized strategies: adaptive rules about what decisions to make (whether or which ad to show, which pedagogical activity to provide) in which circumstances to maximize for long term outcomes. This research involves developing new data-driven, machine learning approaches to construct such personalized strategies for related individuals, and using them towards improving the effectiveness of online mathematics educational systems. The project frames personalized strategy creation as sequential decision making under uncertainty research. Though there have been many advances in sequential decision making under uncertainty, existing approaches have focused primarily on other application areas, like robotics, and fail to account or leverage for some of the special features that arise when interacting with people. These include that accurate simulation of people is difficult but prior data is often available, and that individuals are often related. This project contributes algorithms for mining existing datasets to create and precisely bound the expected performance of new high-quality strategies and for online policy learning across a series of similar sequential decision making tasks.
在线零售商经常提供量身定做的产品或电影推荐。但是,由数据和统计数据驱动的自动化个性化的力量可能要大得多:想象一下,如果所有孩子都有一个个性化的、自我改进的辅导系统作为他们教育的一部分,对减贫会产生什么影响。为了实现这一愿景,需要个性化系统来推断推荐项目的直接影响(例如,学习者是否会立即从视频讲座中学习)以及其长期影响。例如,推荐的项目或干预可能导致用户改变他/她的偏好、知识状态或揭示关于用户的先前未知的信息。这需要创建个性化策略的方法:关于做出什么决定(是否或显示哪个广告,提供什么教学活动)的适应性规则,在哪些情况下为长期结果最大化。这项研究涉及开发新的数据驱动的机器学习方法来为相关个人构建这样的个性化策略,并使用它们来提高在线数学教育系统的有效性。该项目将个性化战略创建框架为不确定性研究下的序贯决策。尽管在不确定情况下的顺序决策方面取得了许多进展,但现有的方法主要集中在其他应用领域,如机器人技术,没有考虑或利用与人互动时出现的一些特殊功能。这些问题包括,很难对人进行准确的模拟,但之前的数据往往是可用的,而且个人往往是相关的。该项目贡献了挖掘现有数据集的算法,以创建并精确限制新的高质量策略的预期性能,以及跨一系列类似的顺序决策任务的在线策略学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emma Brunskill其他文献
Planning in partially-observable switching-mode continuous domains
- DOI:
10.1007/s10472-010-9202-1 - 发表时间:
2010-07-09 - 期刊:
- 影响因子:1.000
- 作者:
Emma Brunskill;Leslie Pack Kaelbling;Tomás Lozano-Pérez;Nicholas Roy - 通讯作者:
Nicholas Roy
Emma Brunskill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emma Brunskill', 18)}}的其他基金
RI: Small: Using and Gathering Data for Efficient Batch Reinforcement Learning
RI:小型:使用和收集数据以实现高效的批量强化学习
- 批准号:
2112926 - 财政年份:2021
- 资助金额:
$ 28.72万 - 项目类别:
Standard Grant
IIS-RI: International Conference on Automated Planning and Scheduling (ICAPS) 2017 Doctoral Consortium Travel Awards
IIS-RI:国际自动化规划与调度会议 (ICAPS) 2017 博士联盟旅行奖
- 批准号:
1745800 - 财政年份:2017
- 资助金额:
$ 28.72万 - 项目类别:
Standard Grant
CAREER: Efficient Learning of Personalized Strategies
职业:高效学习个性化策略
- 批准号:
1350984 - 财政年份:2014
- 资助金额:
$ 28.72万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
- 批准号:
2239458 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Safe and Efficient Robot Learning from Demonstration in the Real World
职业:安全高效的机器人从现实世界的演示中学习
- 批准号:
2323384 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2342726 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Resource Efficient Systems for Machine Learning on Structured Data
职业:结构化数据机器学习的资源高效系统
- 批准号:
2237306 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant
CAREER: Efficient Learning of Equilibria in Dynamic Bayesian Games with Nash, Bellman and Lyapunov
职业生涯:与纳什、贝尔曼和李亚普诺夫一起有效学习动态贝叶斯博弈中的均衡
- 批准号:
2238838 - 财政年份:2023
- 资助金额:
$ 28.72万 - 项目类别:
Continuing Grant