Mathematical Theory Development in America
美国数学理论的发展
基本信息
- 批准号:1753998
- 负责人:
- 金额:$ 1.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a doctoral dissertation research project in the history of mathematics. It uses postulate theory, an approach to the foundations of mathematics that searches for and establishes the basic postulates (or principles) that govern a particular mathematical field, as a window into the relationship between mathematics and American society during the first half of the 20th Century. The goal is to show how the relationship between mathematics and society in the early twentieth century helped erect barriers to participation in the mathematics community today. Closely tied to culture and diversity issues are ongoing debates about math education and the challenge of public engagement. This study's analysis of math education debates in the early twentieth century will highlight the many factors that are at stake in such debates, which are important to consider when drafting and deliberating current policy.The project addresses three primary research questions: How did the exploration of the foundations of mathematics inform the meaning and value of American mathematics in the early 1900s? How were the boundaries of professional mathematics redefined in the US during that time? How did the cultural identity and public image of American mathematicians change alongside Progressive Era conceptions of hierarchy and difference? These questions will be answered through the analysis of institutional and public media archives as well as the work of individual mathematicians engaged in the study of postulates. The overall purpose is to further understand the development of American mathematics by situating its early-twentieth-century growth within the context of American society. By exploring the image and status of professional mathematicians in the Progressive Era United States alongside historical perceptions of who was thought capable of contributing to mathematical knowledge, this study will shed light on the dynamics of inclusivity and cultural identity in American science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持数学史的博士论文研究项目。它使用假设理论,一种数学基础的方法,寻找并建立支配特定数学领域的基本假设(或原理),作为了解 20 世纪上半叶数学与美国社会之间关系的窗口。目的是展示二十世纪初期数学与社会之间的关系如何帮助建立当今数学界的参与障碍。与文化和多样性问题密切相关的是关于数学教育和公众参与挑战的持续辩论。这项研究对 20 世纪初数学教育辩论的分析将突出这些辩论中的许多重要因素,这些因素在起草和审议当前政策时需要考虑。该项目解决了三个主要研究问题:对数学基础的探索如何影响 1900 年代初美国数学的意义和价值?在那段时期,美国是如何重新定义专业数学的边界的?美国数学家的文化认同和公众形象如何随着进步时代的等级和差异概念而变化?这些问题将通过对机构和公共媒体档案以及从事假设研究的个别数学家的工作的分析来回答。总体目的是通过将美国数学在二十世纪初的发展置于美国社会的背景下,进一步了解美国数学的发展。通过探索美国进步时代专业数学家的形象和地位,以及对谁被认为能够对数学知识做出贡献的历史看法,这项研究将揭示美国科学中包容性和文化认同的动态。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suman Seth其他文献
When more does not necessarily mean better: Health-related illfare comparisons with non-monotone welbeing relationship
当更多并不一定意味着更好时:与健康相关的疾病与非单调福利关系的比较
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mauricio A Pablaza;Florent B Resson;Gaston Y Alonetzky;S. Alkire;Martine Audibert;Marie;Patrick Guillaumont;Suman Seth - 通讯作者:
Suman Seth
Composite indices, alternative weights, and comparison robustness
- DOI:
10.1007/s00355-018-1132-6 - 发表时间:
2018-06-05 - 期刊:
- 影响因子:0.800
- 作者:
Suman Seth;Mark McGillivray - 通讯作者:
Mark McGillivray
When more does not necessarily mean better : Health-related illfare comparisons with non-monotone welfare relationships
当更多并不一定意味着更好时:与健康相关的疾病与非单调福利关系的比较
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Apablaza;Florent Bresson;G. Yalonetzky;Sabine Alkire;Martine Audibert;Marie;Suman Seth;Patrick Guillaumont - 通讯作者:
Patrick Guillaumont
Crafting the quantum: Arnold Sommerfeld and the older quantum theory
- DOI:
10.1016/j.shpsa.2008.06.005 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:
- 作者:
Suman Seth - 通讯作者:
Suman Seth
Corruption can cause healthcare deprivation: Evidence from 29 sub-Saharan African countries
腐败会导致医疗保健匮乏:来自 29 个撒哈拉以南非洲国家的证据
- DOI:
10.1016/j.worlddev.2024.106630 - 发表时间:
2024 - 期刊:
- 影响因子:6.9
- 作者:
Chei Bukari;Suman Seth;Gaston Yalonetkzy - 通讯作者:
Gaston Yalonetkzy
Suman Seth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suman Seth', 18)}}的其他基金
Doctoral Dissertation Research: Carin Berkowitz: "Discovering" the Nerves: Experiment in Early Nineteenth-Century British Pedagogical Culture
博士论文研究:Carin Berkowitz:“发现”神经:十九世纪早期英国教育文化中的实验
- 批准号:
0646371 - 财政年份:2007
- 资助金额:
$ 1.26万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Towards a mathematical theory of development
迈向发展的数学理论
- 批准号:
RGPIN-2020-04312 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Discovery Grants Program - Individual
Construction of a new mathematical model of grain boundary motion and development in the theory of differential equations
晶界运动新数学模型的构建及微分方程理论的发展
- 批准号:
22K03376 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of mathematical model of thermo-fluid phenomena in microchannel with stochastic connections using determinism and probability theory
使用确定论和概率论开发具有随机连接的微通道中热流体现象的数学模型
- 批准号:
22K18769 - 财政年份:2022
- 资助金额:
$ 1.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Towards a mathematical theory of development
迈向发展的数学理论
- 批准号:
RGPIN-2020-04312 - 财政年份:2021
- 资助金额:
$ 1.26万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical theory of development
迈向发展的数学理论
- 批准号:
RGPIN-2020-04312 - 财政年份:2020
- 资助金额:
$ 1.26万 - 项目类别:
Discovery Grants Program - Individual
Towards a mathematical theory of development
迈向发展的数学理论
- 批准号:
DGECR-2020-00010 - 财政年份:2020
- 资助金额:
$ 1.26万 - 项目类别:
Discovery Launch Supplement
Development of a mathematical model for inclusive education by applying conjoint analysis theory
应用联合分析理论建立全纳教育数学模型
- 批准号:
20K20849 - 财政年份:2020
- 资助金额:
$ 1.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New development of mathematical theory of turbulence by collaboration of the nonlinear analysis and computational fluid dynamics
非线性分析与计算流体动力学相结合的湍流数学理论的新发展
- 批准号:
16H06339 - 财政年份:2016
- 资助金额:
$ 1.26万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Development and deepening of representation theory and number theory through mathematical analysis of quantum interactions
通过量子相互作用的数学分析来发展和深化表示论和数论
- 批准号:
16K05063 - 财政年份:2016
- 资助金额:
$ 1.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new development of mathematical theory of Discontinuous Galerkin FEM
间断伽辽金有限元数学理论的新发展
- 批准号:
15H03635 - 财政年份:2015
- 资助金额:
$ 1.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




