CRII: CHS: Identifying When People Need a Robot's Assistance
CRII:CHS:识别人们何时需要机器人的帮助
基本信息
- 批准号:1755823
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-15 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robot collaborators and assistants have the potential to improve lives by helping people perform physical tasks more safely, quickly, and effectively. For example, wheelchair-mounted assistive robot arms can help people with motor impairments perform activities of daily living (like eating) independently, increasing their self-sufficiency and quality of life. However, robot assistance is limited by the fact that robots cannot always recognize when people want or need help. The goal of this research is to develop algorithms that enable robots to recognize when a person is having difficulty with a physical task, based on their behavior before they reach a failure point, and then provide the necessary assistance to complete the task. This work will draw from psychology to explore how nonverbal behaviors like eye gaze, body posture, and facial expression can reveal people's need for assistance. The project will include a data collection study of nonverbal behavior during robot operation. The nonverbal behavior collected during this study will be open sourced to enable other researchers to draw insights about human behavior during human-robot interactions. The work will improve the usefulness of collaborative and assistive robots and lead to better integration of personal robots in workplaces, homes, and assistive care environments.The main research question in this work is: can robots recognize that a person needs assistance based on their nonverbal behaviors during a human-robot interaction? To investigate this, the project has four goals. Goal 1: Recognize the need for assistance. The work will begin with a large-scale data collection of people's nonverbal behavior (eye gaze, body posture, and facial expressions) during an assistive human-robot manipulation task. Using machine learning approaches, the project team will train predictors on the data that can use nonverbal behavior patterns to recognize when people need assistance. Goal 2: Provide assistance. By monitoring real-time nonverbal behaviors during a human-robot interaction, this system will use the trained predictors from Goal 1 to identify when a person needs help. Once the system predicts that assistance is required, it should be able to provide that assistance seamlessly and in real time using shared autonomy. Goal 3: Evaluate the system. Individual system components will be validated separately, then a full-scale evaluation will be conducted to measure the utility of the implemented system in a real-world assistive human-robot interaction. Goal 4: Create and disseminate an open source data set. A major goal of this project is to collect and share a data set of nonverbal behavior during assistive human-robot interaction, which represents a novel contribution to the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器人协作者和助手有潜力通过帮助人们更安全、快速、有效地执行体力任务来改善生活。例如,安装在轮椅上的辅助机器人手臂可以帮助有运动障碍的人独立进行日常生活活动(例如吃饭),提高他们的自给自足和生活质量。然而,机器人援助受到以下事实的限制:机器人无法总能识别人们何时需要或需要帮助。这项研究的目标是开发算法,使机器人能够根据人在达到故障点之前的行为来识别人何时在执行体力任务时遇到困难,然后提供必要的帮助来完成任务。这项工作将从心理学的角度探讨眼神、身体姿势和面部表情等非语言行为如何揭示人们对帮助的需求。该项目将包括对机器人操作过程中非语言行为的数据收集研究。本研究期间收集的非语言行为将开源,以便其他研究人员能够深入了解人机交互过程中的人类行为。这项工作将提高协作和辅助机器人的实用性,并使个人机器人更好地融入工作场所、家庭和辅助护理环境中。这项工作的主要研究问题是:机器人能否根据人机交互过程中的非语言行为识别出一个人需要帮助?为了调查这一点,该项目有四个目标。目标 1:认识到援助的需要。这项工作将从在辅助人类机器人操作任务期间收集人们的非语言行为(眼神、身体姿势和面部表情)的大规模数据开始。使用机器学习方法,项目团队将根据数据训练预测器,这些预测器可以使用非语言行为模式来识别人们何时需要帮助。目标 2:提供援助。通过监控人机交互过程中的实时非语言行为,该系统将使用目标 1 中经过训练的预测器来识别一个人何时需要帮助。一旦系统预测需要帮助,它应该能够利用共享自主权无缝、实时地提供帮助。目标 3:评估系统。各个系统组件将分别进行验证,然后进行全面评估,以衡量所实施系统在现实世界辅助人机交互中的效用。目标 4:创建并传播开源数据集。该项目的一个主要目标是收集和共享辅助人机交互过程中的非语言行为数据集,这代表了对该领域的新颖贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examining the Effects of Anticipatory Robot Assistance on Human Decision Making
检查预期机器人辅助对人类决策的影响
- DOI:10.1007/978-3-030-62056-1_49
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Newman, B.A.;Biswas, A;Ahuja, S.;Girdhar, S.;Kitani, K.K.;Admoni, H.
- 通讯作者:Admoni, H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henny Admoni其他文献
Henny Admoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henny Admoni', 18)}}的其他基金
CAREER: Toward Proactive Assistive Robotics
职业:迈向主动辅助机器人
- 批准号:
1943072 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于CHS-DRGs和诊疗全流程大数据挖掘的子宫肌瘤手术“主路径+支路径”的复合临床路径模式研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CHS-DRG模式下ICU老年患者CRE医院感染防控对策研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
3,5-双(2-羟基-4-氟-苯基)-1,2,4-噁二唑-铈配合物@CD-MFO-CHS 脑靶向载药纳米粒的制备及抗 AIS脑保护作用研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
威尼斯镰刀菌中几丁质合成关键基因Chs调控菌丝体结构与蛋白消
化特性的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
PLA/GO/CHS导电分层缓释给药系统治疗长节段周围神经损伤的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
旁系同源CHS在柑橘黄酮类及花色苷合成通路中差异化调控的分子机制
- 批准号:32302507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Chs 基因对红曲色素和桔霉素合成代谢的调控作用
- 批准号:2021JJ31146
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
红曲霉关键chs基因调控红曲色素和桔霉素合成的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
除虫菊CHS合成酶及其互作蛋白协同调控除虫菊酯合成代谢的催化机制解析
- 批准号:31902051
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究
- 批准号:61574122
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CARDIOVASCULAR HEALTH STUDY (CHS) - TASK AREA C, STUDY CLOSEOUT
心血管健康研究 (CHS) - 任务领域 C,研究收尾
- 批准号:
10974001 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: CHS: RUI: Computational models of humans for studying and improving Human-AI interaction
CRII:CHS:RUI:用于研究和改善人机交互的人类计算模型
- 批准号:
2218226 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
- 批准号:
2245055 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
- 批准号:
2244651 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CHS: Developing Youth Data Literacies through a Visual Programming Environment
CRII:CHS:通过可视化编程环境培养青少年数据素养
- 批准号:
2230291 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
- 批准号:
2125113 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CHS: Small: Guiding future design of affect-aware cyber-human systems through the investigation of human reactions to machine errors
CHS:小型:通过研究人类对机器错误的反应来指导情感感知网络人类系统的未来设计
- 批准号:
2151464 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CHS: Small: Developing and Validating a Physically Accurate Light-Scattering Model for the Rendering of Bird and Other Dinosaur Feathers
CHS:小型:开发和验证用于渲染鸟类和其他恐龙羽毛的物理精确光散射模型
- 批准号:
2007974 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant














{{item.name}}会员




