CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
基本信息
- 批准号:2244651
- 负责人:
- 金额:$ 35.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using a digital computer to accurately simulate soft objects that deform under external interactions is a fundamental problem in a wide range of scientific and engineering fields. For example, without being able to deliver a faithful force-displacement response, virtual surgical training is hardly effective and provides users with misleading experiences. In the past decade, the number of simulation degrees of freedom (DOFs) for deformable models has increased from hundreds to hundreds-of-thousands and even millions. Computing hardware that has become more and more powerful has contributed significantly to this development, but unfortunately it is unlikely that in the future computer simulation will continue to benefit dramatically from increased processor frequency. Indeed, in the last few years the chip industry has already moved the emphasis from a faster processor clock to multi-core architectures. On the other hand, with the widespread adoption of advanced acquisition devices/techniques, the complexity and scale of the data that can be handled by computers have grown exponentially, and large-scale geometries are becoming ubiquitous in modern 3D data processing. This new era of data explosion imposes unprecedented challenges on deformable simulation. Existing methods typically use one-stop solvers that calculate all the unknown DOFs of a system, but that is computationally intensive due to the underlying high-dimensional numerical integration. Even with state-of-the-art hardware, deformable simulation can still take hours, days, or even weeks for massive scenarios. Clearly, conventional simulation methodologies fail to well accommodate distributed computing resource allocation, and become more and more cumbersome with bigger and bigger datasets. This calls for rebranded algorithmic frameworks and dedicated numerical procedures for large-scale geometrically-complex and nonlinear deformable models that empower next-generation graphics applications. Motivated by these grand challenges, this project systematically investigates a collection of theoretical advancements, computational techniques, and numerical implementations that push the frontier of large-scale nonlinear deformable models to "post Moore's law." Specifically, the intellectual merit of the research will comprise the following aspects:o The project will devise a theoretically grounded domain decomposition based parallel deformable simulator. By weakening inter-domain linkages, the domain-level computations become independent and parallelizable. The coupling mechanism will be generalized and enriched so that non-conforming and overlapping domain decompositions are made possible. This includes an in-depth optimization of the domain tessellation under specified hardware configurations. Simulation reusability will be further enhanced through a novel technique called cellular domains.o The project will deepen the current understanding of large-scale model reduction and re-forge this useful tool in the context of parallel computing. In particular, how to utilize power iteration to obtain the spectral analysis will be explored. Furthermore, geometry-based reduction directly dictates reduced DOFs and has a more robust simulation even under imposed extreme constraints.o A well-argued computational theory is less practicable unless encapsulated by a set of carefully engineered implementations. Accordingly, the project will also design customized numerical procedures paired with proposed algorithmic techniques, and the entire simulation framework will be fine-tuned at the system level, solver level, and sub-solver level by leveraging unique data patterns, numerical behaviors, and problem structures of domain decomposed deformable models.o As a testbed platform, the project will develop a novel real-time human tongue motion visualization system. Over 8% of U.S. children have a communication or swallowing disorder. Built upon the new deformation solver, an ultrasound-imaging-driven real-time human tongue visualization system will be developed to assist doctors and speech therapists to better understand the pathological mechanism behind this disease and plan more effective subject-specific medical/physical treatments.
利用数字计算机精确地模拟在外部相互作用下变形的软物体是广泛的科学和工程领域中的基本问题。 例如,如果不能提供真实的力-位移响应,虚拟手术培训几乎没有效果,并为用户提供误导性的体验。 在过去的十年中,可变形模型的仿真自由度(DOF)的数量从数百增加到数十万甚至数百万。 已经变得越来越强大的计算硬件对这一发展做出了重大贡献,但不幸的是,在未来计算机模拟不太可能继续从增加的处理器频率中显着受益。 事实上,在过去的几年里,芯片行业已经将重点从更快的处理器时钟转移到多核架构上。 另一方面,随着先进采集设备/技术的广泛采用,计算机可以处理的数据的复杂性和规模呈指数级增长,并且大规模几何形状在现代3D数据处理中变得无处不在。 这个数据爆炸的新时代对可变形仿真提出了前所未有的挑战。 现有的方法通常使用一站式求解器来计算系统的所有未知自由度,但由于底层的高维数值积分,这是计算密集型的。 即使使用最先进的硬件,对于大规模场景,可变形模拟仍然需要数小时,数天甚至数周。 显然,传统的仿真方法不能很好地适应分布式计算资源分配,并且随着越来越大的数据集变得越来越麻烦。 这就要求为大规模几何复杂和非线性可变形模型重新设计算法框架和专用数值程序,以支持下一代图形应用程序。 受这些重大挑战的激励,本项目系统地研究了一系列理论进步、计算技术和数值实现,这些进展将大规模非线性可变形模型的前沿推向“后摩尔定律”。“具体而言,研究的学术价值将包括以下几个方面: 本计画将设计一个以区域分解为基础的平行变形模拟器。 通过削弱域间的联系,域级计算变得独立和可并行。 耦合机制将被推广和丰富,使非协调和重叠的区域分解成为可能。 这包括在指定的硬件配置下对域细分进行深入优化。 仿真的可重用性将通过一种称为蜂窝域的新技术得到进一步提高。 该项目将加深目前对大规模模型简化的理解,并在并行计算的背景下重新打造这一有用的工具。 特别是,如何利用幂迭代来获得谱分析将被探索。 此外,基于几何的简化直接决定了减少的自由度,即使在施加的极端约束下也具有更鲁棒的模拟。 一个论证充分的计算理论是不太可行的,除非封装在一套精心设计的实现。 相应地,该项目还将设计定制的数值程序与建议的算法技术配对,整个模拟框架将通过利用独特的数据模式,数值行为和问题结构在系统级,求解器级和子求解器级进行微调域分解可变形模型。 作为一个实验平台,该项目将开发一个新的实时人类舌头运动可视化系统。 超过8%的美国儿童患有沟通或吞咽障碍。 基于新的变形求解器,将开发一个超声成像驱动的实时人类舌头可视化系统,以帮助医生和语言治疗师更好地了解这种疾病背后的病理机制,并计划更有效的特定主题的医疗/物理治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yin Yang其他文献
Multilabel Image Classification via Feature/Label Co-Projection
通过特征/标签共投影进行多标签图像分类
- DOI:
10.1109/tsmc.2020.2967071 - 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Shiping Wen;Weiwei Liu;Yin Yang;Pan Zhou;Zhenyuan Guo;Zheng Yan;Yiran Chen;Tingwen Huang - 通讯作者:
Tingwen Huang
Deep Stereo Matching With Hysteresis Attention and Supervised Cost Volume Construction
具有滞后注意和监督成本体积构建的深度立体匹配
- DOI:
10.1109/tip.2021.3135485 - 发表时间:
2021-12 - 期刊:
- 影响因子:10.6
- 作者:
Kai Zeng;Yaonan Wang;Jianxu Mao;Caiping Liu;Weixing Peng;Yin Yang - 通讯作者:
Yin Yang
Robust Exponential Synchronization for Memristor Neural Networks With Nonidentical Characteristics by Pinning Control
通过钉扎控制实现具有不同特性的忆阻器神经网络的鲁棒指数同步
- DOI:
10.1109/tsmc.2019.2911510 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Yueheng Li;Biao Luo;Derong Liu;Yin Yang;Zhanyu Yang - 通讯作者:
Zhanyu Yang
Environmental Biotechnology for Efficient Utilization of Industrial Phosphite Waste
工业亚磷酸废物高效利用的环境生物技术
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yuta Nakashima;Yin Yang;Kazuyuki Minami;A. Kuroda and R. Hirota - 通讯作者:
A. Kuroda and R. Hirota
Leakage of an eagle flight feather and its influence on the aerodynamics
鹰飞羽泄漏及其对空气动力学的影响
- DOI:
10.1088/1674-1056/abc3b6 - 发表时间:
2020-10 - 期刊:
- 影响因子:1.7
- 作者:
Di Tang;Dawei Liu;Yin Yang;Yang Li;Xipeng Huang;Kai Liu - 通讯作者:
Kai Liu
Yin Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yin Yang', 18)}}的其他基金
CAREER: Deep Learning Empowered Nonlinear Deformable Model
职业:深度学习赋能非线性变形模型
- 批准号:
2301040 - 财政年份:2022
- 资助金额:
$ 35.73万 - 项目类别:
Continuing Grant
CHS: Small: High Resolution Motion Capture
CHS:小:高分辨率运动捕捉
- 批准号:
2008564 - 财政年份:2020
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Learning Active Physics-Based Models from Data
III:小:协作研究:从数据中学习基于物理的主动模型
- 批准号:
2008915 - 财政年份:2020
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
CAREER: Deep Learning Empowered Nonlinear Deformable Model
职业:深度学习赋能非线性变形模型
- 批准号:
2011471 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Continuing Grant
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
- 批准号:
2016414 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
CAREER: Deep Learning Empowered Nonlinear Deformable Model
职业:深度学习赋能非线性变形模型
- 批准号:
1845026 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Continuing Grant
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
- 批准号:
1717972 - 财政年份:2017
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
CRII: CHS: A Plug-and-Play Deformable Model Based on Extended Domain Decomposition
CRII:CHS:基于扩展域分解的即插即用变形模型
- 批准号:
1464306 - 财政年份:2015
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CIF: Small: Towards a Control Framework for Neural Generative Modeling
CIF:小:走向神经生成建模的控制框架
- 批准号:
2348624 - 财政年份:2024
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247619 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318844 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
- 批准号:
2225161 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2247620 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Deceptive and Domain-Specific Cyber-Physical Honeypots
SaTC:核心:小型:走向欺骗性和特定领域的网络物理蜜罐
- 批准号:
2231651 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III: Small Towards Fair Outlier Detection
协作研究:IIS-III:小到公平的异常值检测
- 批准号:
2310481 - 财政年份:2023
- 资助金额:
$ 35.73万 - 项目类别:
Standard Grant