Dynamical Rigidity Percolation in Microtubule Bundles
微管束中的动态刚性渗透
基本信息
- 批准号:1207624
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical and computational research and education at the interface of the mathematical sciences and biology. The coupled microtubule-tau bundles of the neuronal axon are a remarkable active material, functionally stable over decades even as the component proteins are constantly renewed. Using mechanisms proposed for tau removal in late stages of Alzheimer's Disease, which are initiated by oligomerization of the a-beta peptide, the PIs will develop a coarse grained theory of the mechanical failure of this system as the tau proteins are depleted via: (i) tau fragmentation induced by a-beta oligomer triggered protease production; (ii) tau charging (phosphorylation) through a-beta triggered kinase production; (iii) aggregation which robs tau monomers from the bundles. The kinetics of these processes should produce different time courses for tau removal and hence allow insight into mechanical failure mechanisms. The taus will be modeled as springs. The PIs will carry out explicit molecular dynamics simulations on likely tau oligomer structures to determine the relevant spring forces. The compressed tau springs hold off mechanical collapse induced by at least two sources: (i) depletion forces between microtubules induced by intercalating molecules, which have a higher translational entropy when the microtubules collapse together; (ii) surface tension from the outer membrane/actin filament cytoskeleton. The PIs will develop force models for the taus and microtubule depletion forces, and input them to a 2-dimensional percolation model for the mechanical rigidity. The sequential "spring removal" can be mapped to the kinetics of the tau degradation to predict time courses for cell mechanics experiments conducted under exposure to a-beta oligomers. The PIs will also explore a fully three-dimensional model, which allows for tilting of the microtubules, which might be important for allowing the microtubules to experience the depletion attraction. Finally, the PIs will attempt to develop algorithms to scale the time behavior at high laboratory concentrations for the damaging A-beta oligomers of Alzheimer's disease to physiologically relevant concentrations. The use of mechanical approaches to the study of intracellular properties is relatively new, as experimental approaches are only recently catching up to theoretical potential. The PIs will support both graduate students and advanced undergraduates to work on these problems; they will receive interdisciplinary education in the physical and biological sciences, and will have access to state of the art GPU based computing facilities augmented by this award. NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education at the interface of the mathematical sciences and biology. The PIs will develop computer-based models for the mechanical properties of the proteins inside the long shafts, or axons, of nerve cells. Specifically, they will simulate the long protein filaments, known as microtubules, which are interlinked by protein springs, tau proteins, to find how the stiffness of the system is degraded when the tau proteins are removed. This happens in the time course of Alzheimer's disease, but the precise manner in which the tau removal occurs is a matter of ongoing investigation. By developing simulations of the mechanical properties of these protein bundles, which include the dynamical behavior of the tau proteins and the microtubules, the PIs can account for the different paths by which tau proteins can be degraded in Alzheimer's disease. Including forces driving microtubules together due to other molecules inside the nerve cells and the "balloon skin" of the nerve cell external membrane, the PIs hope to provide experimentally testable predictions to identify the key processes of nerve cell degradation and death in Alzheimer's disease. Tau proteins are interesting systems in their own right: unlike proteins such as hemoglobin which adopt unique shapes in the human body, tau proteins are intrinsically unstructured yet clearly important to nerve cell function. As an input to larger scale mechanical models, the PIs will simulate the mechanical properties of individual and paired tau proteins. The insights gained may provide inspiration for new approaches to active, self-healing composite materials outside of living systems. Since the microtubule/tau bundles remain mechanically stable and functional over decades of time in healthy, disease free individuals, they are remarkable model systems for such smart, active materials.
技术摘要奖在数学科学和生物学的界面上支持理论和计算研究和教育。神经元轴突的耦合微管-TAU束是一种显着的活性材料,即使不断更新组件蛋白在数十年中,在功能上稳定。 Using mechanisms proposed for tau removal in late stages of Alzheimer's Disease, which are initiated by oligomerization of the a-beta peptide, the PIs will develop a coarse grained theory of the mechanical failure of this system as the tau proteins are depleted via: (i) tau fragmentation induced by a-beta oligomer triggered protease production; (ii)通过A-beta触发激酶产生的Tau充电(磷酸化); (iii)聚集,从捆绑包中抢劫tau单体。 这些过程的动力学应产生不同的时间课程,以进行tau去除,从而可以深入了解机械故障机制。 Taus将被建模为弹簧。 PI将对可能的tau低聚物结构进行明确的分子动力学模拟,以确定相关的弹簧力。 压缩的tau弹簧阻止了至少两个来源诱导的机械塌陷:(i)通过插入分子诱导的微管之间的耗尽力,当微管一起塌陷时,它们具有较高的翻译熵; (ii)外膜/肌动蛋白细胞骨骼的表面张力。 PI将开发用于TAU和微管耗竭力的力模型,并将其输入到机械刚性的二维渗透模型中。 可以将顺序的“弹簧去除”映射到Tau降解的动力学,以预测暴露于A-Beta低聚物的细胞力学实验的时间课程。 PI还将探索一个完全三维模型,该模型允许微管的倾斜,这对于允许微管体验耗尽的吸引力可能很重要。最后,PI将尝试开发算法以在高实验室浓度下扩展时间行为,以使阿尔茨海默氏病的A-beta低聚物损害与生理相关的浓度。使用机械方法来研究细胞内特性是相对较新的,因为实验方法直到最近才能遵循理论上的潜力。 PI将支持研究生和高级本科生解决这些问题;他们将在物理和生物科学中接受跨学科教育,并可以访问该奖项增强基于GPU的计算机设施。非技术摘要这一奖项支持数学科学和生物学界面的理论和计算研究和教育。 PI将开发基于计算机的模型,以用于神经细胞内长轴或轴突内部蛋白质的机械性能。具体而言,它们将模拟长蛋白丝(称为微管),它们与蛋白质弹簧,tau蛋白相互联系,以找到当去除tau蛋白时如何降解系统的刚度。 这发生在阿尔茨海默氏病的时间过程中,但是发生tau的确切方式是正在进行的调查问题。 通过开发这些蛋白束的机械性能的模拟,其中包括tau蛋白和微管的动力学行为,PIS可以解释可在阿尔茨海默氏病中降解tau蛋白的不同路径。包括由于神经细胞内部的其他分子和神经细胞外膜外膜的“气球皮肤”而驱动微管的力,PIS希望提供可实验测试的预测,以确定阿尔茨海默氏病中神经细胞降解和死亡的关键过程。 tau蛋白本身就是有趣的系统:与蛋白质(如血红蛋白)不同的是在人体中采用独特形状的蛋白质,tau蛋白质本质上是非结构化的,但对于神经细胞功能显然很重要。 作为大规模机械模型的输入,PI将模拟单个和配对的tau蛋白的机械性能。 获得的见解可能会为活跃的自我修复复合材料的新方法提供灵感。 由于在健康,无疾病的个体中,微管/tau束在机械上保持稳定和功能性,因此它们是这种智能活性材料的非凡模型系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Cox其他文献
STAUBLI TX40 ROBOTS -EARLY STAGES
史陶比尔 TX40 机器人 - 早期阶段
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Nicholas R. Waytowich;Andrew Henderson;D. Krusienski;Daniel Cox - 通讯作者:
Daniel Cox
Neurodegenerative damage reduces firing coherence in a continuous attractor model of grid cells.
神经退行性损伤降低了网格细胞连续吸引子模型中的放电相干性。
- DOI:
10.1103/physreve.104.044414 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yu;Daniel Cox - 通讯作者:
Daniel Cox
Study of non-fusion products in the Ti50+Cf249 reaction
Ti50 Cf249反应中非聚变产物的研究
- DOI:
10.1016/j.physletb.2018.07.058 - 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
A. Nitto;J. Khuyagbaatar;D. Ackermann;L. Andersson;E. Badura;M. Block;H. Brand;I. Conrad;Daniel Cox;C. Düllmann;J. Dvorak;K. Eberhardt;P. A. Ellison;N. Esker;J. Even;C. Fahlander;U. Forsberg;J. Gates;P. Golubev;O. Gothe;K. Gregorich;W. Hartmann;R. Herzberg;F. Heßberger;J. Hoffmann;R. Hollinger;A. Hübner;E. Jäger;B. Kindler;S. Klein;I. Kojouharov;J. V. Kratz;J. Krier;N. Kurz;S. Lahiri;B. Lommel;M. Maiti;R. Mändl;E. Merchán;S. Minami;A. Mistry;C. Mokry;H. Nitsche;J. Omtvedt;G. Pang;D. Renisch;D. Rudolph;J. Runke;L. Sarmiento;M. Schädel;H. Schaffner;B. Schausten;A. Semchenkov;J. Steiner;P. Thörle;N. Trautmann;A. Türler;J. Uusitalo;D. Ward;M. Węgrzecki;P. Wieczorek;N. Wiehl;A. Yakushev;V. Yakusheva - 通讯作者:
V. Yakusheva
Arterial Blood Pressure System Modeling and Signal Analysis
动脉血压系统建模和信号分析
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. Ebenal;S. Vasana;C. Clinton;Daniel Cox;T. Shine - 通讯作者:
T. Shine
Multi-objective optimization of mitigation strategies for buildings subject to multiple hazards
遭受多种危害的建筑物缓解策略的多目标优化
- DOI:
10.1016/j.ijdrr.2023.104125 - 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Himadri Sen Gupta;Tarun Adluri;Dylan Sanderson;AndresD. Gonzalez;Charles D. Nicholson;Daniel Cox - 通讯作者:
Daniel Cox
Daniel Cox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Cox', 18)}}的其他基金
Collaborative Research: Understanding Hybrid Green-Gray Coastal Infrastructure Processes and Performance Uncertainties for Flood Hazard Mitigation
合作研究:了解混合绿灰色沿海基础设施流程和缓解洪水灾害的性能不确定性
- 批准号:
2110439 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large Wave Flume and Directional Wave Basin 2021-2025
自然灾害工程研究基础设施:大型波浪水槽和定向波池实验设施2021-2025
- 批准号:
2037914 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Cooperative Agreement
Planning Grant: Engineering Research Center for Adaptive and Resilient Coastal Infrastructure (CARCI)
规划资助:适应性和弹性沿海基础设施工程研究中心(CARCI)
- 批准号:
1840652 - 财政年份:2018
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Physics of Dune Erosion during Extreme Wave and Storm-Surge Events
合作研究:极端波浪和风暴潮事件期间沙丘侵蚀的物理学
- 批准号:
1756449 - 财政年份:2018
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Wave, Surge, and Tsunami Overland Hazard, Loading and Structural Response for Developed Shorelines
合作研究:波浪、浪涌和海啸陆上灾害、荷载和已开发海岸线的结构响应
- 批准号:
1661315 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Natural Hazards Engineering Research Infrastructure: Experimental Facility with Large Wave Flume and Directional Wave Basin
自然灾害工程研究基础设施:大型波浪水槽和定向波池实验设施
- 批准号:
1519679 - 财政年份:2016
- 资助金额:
$ 51万 - 项目类别:
Cooperative Agreement
I-Corps: Hybrid Protein Graphene Electrodes for Supercapacitors
I-Corps:用于超级电容器的混合蛋白石墨烯电极
- 批准号:
1620998 - 财政年份:2016
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Large-scale laboratory investigation and numerical modeling of sheet flow sediment transport dynamics across a surf zone sand bar
合作研究:大规模实验室调查和横跨冲浪区沙洲的面流沉积物输运动力学的数值模拟
- 批准号:
1356978 - 财政年份:2014
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
ICAM - Institute for Complex Adaptive Matter
ICAM - 复杂自适应物质研究所
- 批准号:
1411344 - 财政年份:2014
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Mechanics and Conditional Probabilities for Prediction of Hurricane Surge and Wave Loads on Elevated Coastal Structures
合作研究:预测飓风潮和高架海岸结构波浪载荷的基本力学和条件概率
- 批准号:
1301016 - 财政年份:2013
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
相似国自然基金
半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
- 批准号:52365006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
大型弱刚性航天舱体构件机器人铣削加工系统振动抑制方法研究
- 批准号:52375500
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
川藏铁路长大隧道段架设高速交流刚性网的弓网动力学建模及耦合平顺性研究
- 批准号:52367009
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
非刚性折叠超材料的设计理论和力学性能研究
- 批准号:52373293
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
醛基化纳米纤维素还原的刚性配体水溶性银簇可控制备及构效关系研究
- 批准号:22308108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
- 批准号:
10681111 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
- 批准号:
10656057 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别: