A Breakthrough Additive Manufacturing Method for High-Strength Lightweight 3D Micro-Architectured Materials

高强度轻质 3D 微结构材料的突破性增材制造方法

基本信息

  • 批准号:
    1757117
  • 负责人:
  • 金额:
    $ 30.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The design and manufacture of lightweight materials having superior mechanical properties such as high strength is one of the key challenges for scientists and engineers. Current state-of-the-art materials show a drastic tradeoff between weight and strength, while manufacturing strategies for porous lightweight materials suffer from poor control over material architecture and limited material choices. This project investigates a novel additive manufacturing (AM) method that uses printing of nanoparticles to fabricate a new class of three-dimensional (3D) micro-architectured materials, which will possess the desired characteristics of low weight and high strength. The research will also incorporate multi-scale mechanical models that consider the effect of microstructures and length scales specific to AM. The research results will advance the field of AM by enabling rapid fabrication of 3D structures with custom architectures and materials that have a wide range of applications, including biomedical implants, porous membranes, tissue engineering, and energy storage. Minority and women undergraduate and graduate researchers will be recruited to work on the project and periodic activities will be carried out targeted to attract K-12 students into the manufacturing research profession. The research focuses on the investigation of a novel additive manufacturing method that involves printing of metal nanoparticles dispersed into a solvent, followed by nanoparticle sintering to realize highly intricate and controlled 3D metal architectures that are lightweight and strong. The first objective of the project is to investigate the scientific principles governing the printing process. Models will be developed that identify the role of droplet condensation, solvent evaporation, and system dynamics in the formation of the 3D architectures. The models will guide experiments that will involve printing of 3D architectures from silver, nickel, or aluminum nanoparticles dispersed into a solvent such as ethylene glycol, and using an Aerosol Jet 3D printer. The second objective of this work is to identify the micro and nanoscale deformation mechanisms governing the mechanical behavior of the metallic 3D structures. Complex 3D lattices (with up to 94% porosity) and micro-pillars will be fabricated by printing, and tested under compression and bending. Multi-scale mechanical models will be developed that consider dislocation motion, stress and strain gradients, and variability in the microstructure. The models will predict optimal 3D designs that improve strength-to-weight ratio dramatically, which will be verified through mechanical tests. The result of this project will be a novel additive manufacturing platform that can create strong lightweight structures with architectural control of over five orders of magnitudes in length scale (tens of nanometers to several millimeters), and will potentially open up new research areas in the manufacturing of 3D architectures and modeling methods for mechanical behavior of additively manufactured parts.
设计和制造具有高强度等优异力学性能的轻质材料是科学家和工程师面临的关键挑战之一。目前最先进的材料在重量和强度之间表现出严重的权衡,而多孔轻质材料的制造策略受到材料结构控制不善和材料选择有限的影响。本项目研究了一种新的添加剂制造(AM)方法,该方法利用纳米颗粒的打印来制备一种新型的三维(3D)微结构材料,该材料将具有所需的轻质和高强度特性。研究还将纳入多尺度力学模型,这些模型考虑AM特有的微观结构和长度尺度的影响这些研究成果将推动AM领域的发展,使其能够快速制造具有定制架构和材料的3D结构,这些结构和材料具有广泛的应用,包括生物医学植入物、多孔膜、组织工程和能量存储。将招募少数民族和女性本科生和研究生参与该项目,并将开展有针对性的定期活动,以吸引K-12学生进入制造业研究专业。研究重点是研究一种新的添加剂制造方法,该方法包括将分散的金属纳米颗粒打印到溶剂中,然后进行纳米颗粒烧结,以实现高度复杂和可控的轻质和坚固的3D金属结构。该项目的第一个目标是调查指导印刷过程的科学原理。将开发模型,以确定液滴冷凝、溶剂挥发和系统动力学在3D结构形成中的作用。这些模型将指导实验,包括打印分散在乙二醇等溶剂中的银、镍或铝纳米颗粒的3D结构,并使用Aerosol Jet 3D打印机。这项工作的第二个目标是确定控制金属三维结构力学行为的微观和纳米尺度的变形机制。复杂的3D网格(具有高达94%的孔隙率)和微柱将通过打印制造出来,并在压缩和弯曲下进行测试。将开发多尺度力学模型,考虑位错运动、应力和应变梯度以及微观结构的可变性。这些模型将预测能够显著提高强度重量比的最佳3D设计,这将通过力学测试进行验证。该项目的结果将是一个新型的添加剂制造平台,它可以创建强大的轻型结构,其建筑控制在长度尺度上超过五个数量级(几十纳米到几毫米),并可能在3D结构制造和附加制造部件的机械行为建模方法方面开辟新的研究领域。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polycrystalline micropillars by a novel 3-D printing method and their behavior under compressive loads
  • DOI:
    10.1016/j.scriptamat.2018.02.027
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Saleh, M. Sadeq;HamidVishkasougheh, Mehdi;Panat, Rahul
  • 通讯作者:
    Panat, Rahul
Interfacial delamination and delamination mechanism maps for 3D printed flexible electrical interconnects
  • DOI:
    10.1016/j.eml.2021.101199
  • 发表时间:
    2021-02-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Brenneman, Jacob;Tansel, Derya Z.;Panat, Rahul
  • 通讯作者:
    Panat, Rahul
3D printed three-dimensional metallic microlattices with controlled and tunable mechanical properties
具有受控和可调机械性能的 3D 打印三维金属微晶格
  • DOI:
    10.1016/j.addma.2021.101856
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Saleh, Mohammad Sadeq;Hu, Chunshan;Brenneman, Jacob;Al Mutairi, Al Muntasar;Panat, Rahul
  • 通讯作者:
    Panat, Rahul
Modeling of porosity and grain size effects on mechanical behavior of additively manufactured structures
  • DOI:
    10.1016/j.addma.2020.101833
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    11
  • 作者:
    M. Hamid;M. S. Saleh;Ali Afrouzian;R. Panat;H. Zbib
  • 通讯作者:
    M. Hamid;M. S. Saleh;Ali Afrouzian;R. Panat;H. Zbib
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Panat其他文献

Aerosol jet 3D printing of gold micropillars and their behavior under compressive loads
  • DOI:
    10.1016/j.addma.2024.104385
  • 发表时间:
    2024-07-25
  • 期刊:
  • 影响因子:
  • 作者:
    Sanjida Jahan;Chunshan Hu;Bin Yuan;Sandra M. Ritchie;Rahul Panat
  • 通讯作者:
    Rahul Panat
On the data and analysis of the research output of India and China: India has significantly fallen behind China
  • DOI:
    10.1007/s11192-014-1236-4
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Rahul Panat
  • 通讯作者:
    Rahul Panat
Realizing arbitrary 3D microarchitectures with curved and near-sharp segments via toolpath strategies in aerosol jet printing
  • DOI:
    10.1016/j.addma.2024.104549
  • 发表时间:
    2024-09-05
  • 期刊:
  • 影响因子:
  • 作者:
    Sandra M. Ritchie;Chunshan Hu;Rahul Panat
  • 通讯作者:
    Rahul Panat
Mechanics of cracking and delamination in 3D-printed microelectronic films
3D 打印微电子薄膜的裂纹和分层机制
  • DOI:
    10.1016/j.actamat.2025.121244
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Chunshan Hu;Sanjida Jahan;Rahul Panat
  • 通讯作者:
    Rahul Panat

Rahul Panat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Panat', 18)}}的其他基金

GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
I-Corps: 3D Printed High Performance Li-ion Batteries
I-Corps:3D 打印高性能锂离子电池
  • 批准号:
    2321285
  • 财政年份:
    2023
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
A Breakthrough Additive Manufacturing Method for High-Strength Lightweight 3D Micro-Architectured Materials
高强度轻质 3D 微结构材料的突破性增材制造方法
  • 批准号:
    1663511
  • 财政年份:
    2017
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
  • 批准号:
    1747608
  • 财政年份:
    2017
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
  • 批准号:
    1563546
  • 财政年份:
    2016
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant

相似海外基金

Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Studentship
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Collaborative R&D
Powder Manufacturing Facility for Additive Manufacturing
用于增材制造的粉末制造设施
  • 批准号:
    LE240100120
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
RII Track-4: @NASA: Investigation of Erosive Wear Resistance of Ceramic Parts Produced by Additive Manufacturing
RII Track-4:@NASA:增材制造生产的陶瓷零件的耐冲蚀磨损性能研究
  • 批准号:
    2327252
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Continuing Grant
CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
  • 批准号:
    2340090
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
  • 批准号:
    2400010
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Solid-State Additive Manufacturing of Metal Matrix Composites via Cold Spray
合作研究:通过冷喷涂进行金属基复合材料的固态增材制造
  • 批准号:
    2330318
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
  • 批准号:
    LP210301261
  • 财政年份:
    2024
  • 资助金额:
    $ 30.99万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了