I-Corps: 3D Printed High Performance Li-ion Batteries
I-Corps:3D 打印高性能锂离子电池
基本信息
- 批准号:2321285
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of three-dimensional (3D) printed battery electrodes that improve energy capacity and power performance. As batteries become an integral part of many products, from electronics to electric vehicles, the demand for high performance batteries is expected to grow considerably. The proposed technology may lead to advanced manufacturing techniques for Li-ion batteries that are well suited for consumer and wearable electronics – fields that are growing rapidly. Longer lasting high-performance batteries may help reduce e-waste by increasing device life. Supply of low-cost energy storage options also may lead to equitable access to energy that is critical for the use of technology. Additionally, these batteries potentially may be utilized in electric vehicles, which is a high growth industry attracting significant investment. Enabling the growth of electric vehicles through high performance batteries may have a significant impact on reducing carbon emissions. This innovation may shift the approach to battery development from materials discovery to process and manufacturing.This I-Corps project is based on the development of ultra-thick electrodes (UTEs) using advanced aerosol jet (AJ) three-dimensional (3D) printing technology. Increasing electrode thickness reduces non-active components (e.g., current collectors, separator, etc.), resulting in large gains in energy density and a significant cost reduction. Increasing electrode thickness, however, delays the Lithium transport, causing poor power performance and capacity loss. Using 3D printing allows creation of UTEs without a loss of performance. UTEs created using the proposed process have been used to demonstrate improved charge times (7.5 minutes for 80% state-of-charge) and increased energy density (up 50% to 450 Wh/kg), by taking full advantage of the energy storage capability of the active materials. In addition, preliminary results using the AJ printed battery show improved performance compared to conventional laminated structure. The silver-based 3D structured electrodes showed a 400% increase in specific capacity, 100% increase in areal capacity, and a high electrode volume utilization compared to a thin, solid silver block electrode. The proposed commercialization of this technology may advance battery development and change how batteries are manufactured.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发三维(3D)打印电池电极,以提高能量容量和功率性能。随着电池成为从电子产品到电动汽车等许多产品的组成部分,对高性能电池的需求预计将大幅增长。这项技术可能会导致锂离子电池的先进制造技术,非常适合消费者和可穿戴电子产品-这些领域正在迅速发展。更持久的高性能电池可以通过延长设备寿命来帮助减少电子废物。提供低成本的能源储存选择也可能导致公平获得能源,这对技术的使用至关重要。此外,这些电池可能用于电动汽车,这是一个吸引大量投资的高增长行业。通过高性能电池实现电动汽车的增长可能对减少碳排放产生重大影响。这一创新可能会将电池开发的方法从材料发现转向工艺和制造。I-Corps的这个项目是基于使用先进的气溶胶喷射(AJ)三维(3D)打印技术开发超厚电极(UTE)。增加电极厚度减少了非活性组分(例如,集电器、隔板等),从而导致能量密度的大幅增加和成本的显著降低。然而,增加电极厚度会延迟锂的传输,导致较差的功率性能和容量损失。使用3D打印可以在不损失性能的情况下创建UTE。通过充分利用活性材料的能量存储能力,使用所提出的工艺产生的UTE已被用于证明改进的充电时间(7.5分钟,80%的充电状态)和增加的能量密度(高达50%至450 Wh/kg)。 此外,使用AJ印刷电池的初步结果表明,与传统的层压结构相比,性能有所改善。与薄的固体银块电极相比,基于银的3D结构化电极显示出比容量增加400%、面积容量增加100%和高电极体积利用率。这项技术的商业化可能会推动电池的发展,并改变电池的制造方式。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Panat其他文献
Aerosol jet 3D printing of gold micropillars and their behavior under compressive loads
- DOI:
10.1016/j.addma.2024.104385 - 发表时间:
2024-07-25 - 期刊:
- 影响因子:
- 作者:
Sanjida Jahan;Chunshan Hu;Bin Yuan;Sandra M. Ritchie;Rahul Panat - 通讯作者:
Rahul Panat
On the data and analysis of the research output of India and China: India has significantly fallen behind China
- DOI:
10.1007/s11192-014-1236-4 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:3.500
- 作者:
Rahul Panat - 通讯作者:
Rahul Panat
Realizing arbitrary 3D microarchitectures with curved and near-sharp segments via toolpath strategies in aerosol jet printing
- DOI:
10.1016/j.addma.2024.104549 - 发表时间:
2024-09-05 - 期刊:
- 影响因子:
- 作者:
Sandra M. Ritchie;Chunshan Hu;Rahul Panat - 通讯作者:
Rahul Panat
Mechanics of cracking and delamination in 3D-printed microelectronic films
3D 打印微电子薄膜的裂纹和分层机制
- DOI:
10.1016/j.actamat.2025.121244 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:9.300
- 作者:
Chunshan Hu;Sanjida Jahan;Rahul Panat - 通讯作者:
Rahul Panat
Rahul Panat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Panat', 18)}}的其他基金
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
- 批准号:
2328678 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A Breakthrough Additive Manufacturing Method for High-Strength Lightweight 3D Micro-Architectured Materials
高强度轻质 3D 微结构材料的突破性增材制造方法
- 批准号:
1663511 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
- 批准号:
1747608 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A Breakthrough Additive Manufacturing Method for High-Strength Lightweight 3D Micro-Architectured Materials
高强度轻质 3D 微结构材料的突破性增材制造方法
- 批准号:
1757117 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
- 批准号:
1563546 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
- 批准号:JCZRLH202500778
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
- 批准号:2025JJ60269
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
- 批准号:2025JJ80409
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
- 批准号:2025JJ70487
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多级结构仿生3D打印生物陶瓷调控
PI3K/Akt信号通路介导细胞应激反应促
进血管化骨再生的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 5万 - 项目类别:
Studentship
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
- 批准号:
DP240100892 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
- 批准号:
2334667 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Development of a 3D-printed anisotropic heart-on-a-chip for drug screening applications
开发用于药物筛选应用的 3D 打印各向异性芯片心脏
- 批准号:
EP/X02721X/2 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Fellowship