Collaborative Research: Efficient Learning of Process-Structure-Property Models in Value-Driven Materials Design

协作研究:价值驱动材料设计中过程-结构-性能模型的有效学习

基本信息

  • 批准号:
    1761406
  • 负责人:
  • 金额:
    $ 34.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

This award supports research that will contribute knowledge towards the efficient discovery of new material systems. New materials are expected to have a significant impact in a broad range of application domains, ranging from biomedical systems to infrastructure and energy systems, improving the efficiencies of these systems and creating new capabilities that have so far been technologically out of reach. In current practice, however, the development of new materials is very costly and time-consuming because it relies mostly on physical testing and experimentation. Rather than focusing on the development of a specific new material, this award aims to develop modeling approaches and learning algorithms that allow for more efficient and effective exploration and discovery of new materials in general. The results of the investigation will help material scientists and engineers understand when to rely on mathematical analysis models or when to use physical experiments so that new information about so far unexplored materials can be gathered efficiently, and so that the materials design effort can be efficiently guided towards materials with desired and valuable properties. The research is expected to lead to a dramatic acceleration of the materials design process with significant competitive advantages to US industry. Through a university-industry consortium these innovations will be transferred into industrial practice. All new models and algorithms will be shared open-source, and the research findings, methods and tools will be incorporated in on-campus and on-line courses, with the potential to reach a large number of students, researchers and practitioners. The main research objective of this project is to critically evaluate the relative merits of different modeling formalisms and approaches for capturing and utilizing materials domain knowledge in a way that is most valuable to the designer. In the design process, multiple information sources will be combined, including bulk material tests, low-cost experimental assays, and physics-based multiscale Process-Structure-Property models. The hypothesis is that combining information from a portfolio of information sources with synergistic cost-accuracy trade-offs leads to a more efficient and effective design process. A second focus is on combining the information from these sources into integrative reduced-order Process-Structure-Property linkages. These linkages support learning through Bayesian updating as new information is acquired, and they are computationally inexpensive and therefore well-suited for searching the design space. The overall design framework will be applied and validated in the context of dual phase steels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持将为有效发现新材料系统贡献知识的研究。预计新材料将在广泛的应用领域产生重大影响,从生物医学系统到基础设施和能源系统,提高这些系统的效率,创造迄今在技术上遥不可及的新能力。然而,在目前的实践中,新材料的开发非常昂贵和耗时,因为它主要依赖物理测试和实验。该奖项不是专注于开发特定的新材料,而是旨在开发建模方法和学习算法,以允许更有效地探索和发现一般的新材料。调查结果将帮助材料科学家和工程师了解何时依赖数学分析模型或何时使用物理实验,以便有效地收集有关迄今未探索的材料的新信息,从而有效地指导材料设计工作,使材料具有所需和有价值的性能。预计这项研究将导致材料设计过程的显著加快,对美国工业具有显著的竞争优势。通过一个大学-工业联盟,这些创新将转化为工业实践。所有新的模型和算法将被开源共享,研究成果、方法和工具将被纳入校园和在线课程,有可能接触到大量的学生、研究人员和实践者。这个项目的主要研究目标是批判性地评估不同建模形式和方法的相对优点,以便以对设计师最有价值的方式获取和利用材料领域知识。在设计过程中,将结合多种信息源,包括大宗材料测试、低成本实验分析和基于物理的多尺度工艺-结构-性能模型。这个假设是,将来自信息源组合的信息与协同成本-精度权衡结合起来,可以产生更高效和更有效的设计过程。第二个重点是将来自这些来源的信息合并成综合的降阶过程--结构--性质联系。这些链接支持在获取新信息时通过贝叶斯更新进行学习,并且它们的计算成本较低,因此非常适合搜索设计空间。总体设计框架将在双相钢的背景下应用和验证。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Insights into the Microstructural Changes During the Processing of Dual-Phase Steels from Multiresolution Spherical Indentation Stress–Strain Protocols
  • DOI:
    10.3390/met10010018
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    A. Khosravani;C. Caliendo;S. Kalidindi
  • 通讯作者:
    A. Khosravani;C. Caliendo;S. Kalidindi
Evaluation of the influence of B and Nb microalloying on the microstructure and strength of 18% Ni maraging steels (C350) using hardness, spherical indentation and tensile tests
评价%20of%20the%20影响%20of%20B%20and%20Nb%20微合金化%20on%20the%20显微组织%20and%20强度%20of%2018%%20Ni%20马氏体时效%20钢%20(C350)%20使用%20硬度,%20球状
  • DOI:
    10.1016/j.actamat.2021.117071
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Parvinian, Sepideh;Sievers, Daniel E.;Garmestani, Hamid;Kalidindi, Surya R.
  • 通讯作者:
    Kalidindi, Surya R.
Protocols for studying the time-dependent mechanical response of viscoelastic materials using spherical indentation stress-strain curves
使用球形压痕应力-应变曲线研究粘弹性材料随时间变化的机械响应的协议
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Surya Kalidindi其他文献

Surya Kalidindi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Surya Kalidindi', 18)}}的其他基金

Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
  • 批准号:
    2221104
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
A Machine Learning Framework for Bridging the Mechanical Responses of a Material at Multiple Structure Length Scales
用于桥接材料在多个结构长度尺度上的机械响应的机器学习框架
  • 批准号:
    2027105
  • 财政年份:
    2020
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Collaboration to Accelerate the Discovery of New Alloys for Additive Manufacturing
DMREF/合作研究:合作加速增材制造新合金的发现
  • 批准号:
    1435237
  • 财政年份:
    2014
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
iREU: Interdisciplinary Research Experience for Undergraduates in Medicine, Energy, and Advanced Manufacturing
iREU:医学、能源和先进制造领域本科生的跨学科研究经验
  • 批准号:
    1332417
  • 财政年份:
    2013
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
GOALI:Deformation Mechanisms and Microstructure Evolution in Thermo-Mechanical Processing of Mg Alloys for Structural Automotive Applications
目标:汽车结构应用镁合金热机械加工中的变形机制和微观结构演变
  • 批准号:
    1332422
  • 财政年份:
    2013
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
AHSS: Development of Novel Finite Element Simulation Tools that Implement Crystal Plasticity Constitutive Theories Using an Efficient Spectral Framework
AHSS:开发新型有限元仿真工具,使用高效的谱框架实现晶体塑性本构理论
  • 批准号:
    1341888
  • 财政年份:
    2012
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
iREU: Interdisciplinary Research Experience for Undergraduates in Medicine, Energy, and Advanced Manufacturing
iREU:医学、能源和先进制造领域本科生的跨学科研究经验
  • 批准号:
    1005090
  • 财政年份:
    2010
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
GOALI:Deformation Mechanisms and Microstructure Evolution in Thermo-Mechanical Processing of Mg Alloys for Structural Automotive Applications
目标:汽车结构应用镁合金热机械加工中的变形机制和微观结构演变
  • 批准号:
    1006784
  • 财政年份:
    2010
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
REU Site: Drexel Research Experience in Advanced Materials (DREAM)
REU 网站:德雷塞尔先进材料研究经验 (DREAM)
  • 批准号:
    0649033
  • 财政年份:
    2007
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
GOALI: Process Design Solutions for Textured Polycrystalline Cubic and Hexagonal Metals: Inverse Solution Methodologies and Experimental Validation
GOALI:织构多晶立方和六方金属的工艺设计解决方案:逆解方法和实验验证
  • 批准号:
    0654179
  • 财政年份:
    2007
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了