Understanding Bio-Locomotion for Collective Swimming in a Quiet and Disturbed Media
了解在安静和受干扰的介质中集体游泳的生物运动
基本信息
- 批准号:1762827
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Living organisms, such as fish, birds, insects, tend to organize themselves into well-defined patterns while performing collective tasks. The current project seeks to understand the role of the environment on the patterns and modes of swimming that can be observed in schools of fish, including the gaits of locomotion, geometrical organization, and synchronization. When fish swim and interact in a viscous fluid media, they experience the flow-mediated drag forces that affect their efficiency and the energy expenditure. The current project is devoted to a search of specific swimming modes that are best suited for certain tasks, for example, in providing the lowest energy expenditure, or the highest speed of motion, given certain constraints, of a collective swimming unit. The fundamental questions are whether, how and why these modes differ or don't differ depending on the task at hand, and how the disturbances in the fluid media, such as wakes, currents, etc., will affect them. This knowledge will help manage and protect natural fish habitats, and assist in engineering and design of autonomous bio-inspired robotic vehicles for various missions. As a part of an educational and outreach program, an interactive software Virtual Robofish will be developed to demonstrate the principles of pattern formation in fish schools to high-school students.The current project seeks to combine fully-resolved hydrodynamic simulations of flexible swimming bodies that self-propel in a viscous fluid media, with gradient-free optimization procedures, in order to reveal and understand the optimal modes of collective bio-locomotion that optimize certain objective functions. Among the objective functions to be considered are the swimming efficiency, swimming speed, and an acoustic signature of a collective swarm. The optimum patterns found via fully-resolved viscous flow simulations will be compared with a low-order finite-dipole potential flow model in order to understand the importance of morphology, kinematics, inertial and viscous effects, omitted in a low-order model, on dynamics of collective swimming. Both the full Navier-Stokes model and the low-order potential flow model will be enhanced to introduce the effect of flow disturbances, such as vortex wakes, velocity currents, etc. The effect that such disturbances have on the optimized swimming modes will be investigated. The generated knowledge will lead to a greater understanding of the principles of self-organization in biological systems, and to practical advances in design, engineering and control of underwater robotic swarms for national security and health applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物体,如鱼、鸟、昆虫,在执行集体任务时往往会将自己组织成明确的模式。目前的项目旨在了解环境对鱼群中可以观察到的游泳模式和模式的作用,包括运动的步态,几何组织和同步。当鱼在粘性流体介质中游动和相互作用时,它们会经历流动介导的阻力,这会影响它们的效率和能量消耗。目前的项目致力于寻找最适合某些任务的特定游泳模式,例如,在给定某些限制的情况下,集体游泳单元提供最低的能量消耗或最高的运动速度。基本的问题是,这些模式是否、如何以及为什么根据手头的任务而不同或不不同,以及流体介质中的扰动,如尾流、电流等,会影响他们。这些知识将有助于管理和保护自然鱼类栖息地,并协助工程和设计用于各种任务的自主生物启发机器人车辆。作为教育和推广计划的一部分,将开发一个互动软件Virtual Robofish,向高中生演示鱼群模式形成的原理。目前的项目旨在将联合收割机完全解析的流体动力学模拟与无梯度优化程序相结合,以揭示和理解优化某些目标函数的集体生物运动的最佳模式。其中要考虑的目标函数是游泳效率,游泳速度,和一个集体群的声学签名。通过完全解析粘性流模拟发现的最佳模式将与低阶有限偶极势流模型进行比较,以了解形态学,运动学,惯性和粘性效应的重要性,省略在低阶模型中,集体游泳的动力学。完整的Navier-Stokes模型和低阶势流模型都将得到增强,以引入流动扰动的影响,如涡尾流、速度流等。将研究这种扰动对优化游泳模式的影响。所产生的知识将导致更好地理解生物系统中的自组织原理,并在国家安全和健康应用中的水下机器人群的设计,工程和控制方面取得实际进展。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraint Enforcement to Guarantee Strictly Feasible Solutions in a Surrogate Based Optimizer
- DOI:10.2514/6.2022-1611
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Ahmed Abouhussein;Nusrat Islam;Y. Peet
- 通讯作者:Ahmed Abouhussein;Nusrat Islam;Y. Peet
Verification and convergence study of a spectral-element numerical methodology for fluid-structure interaction
流固耦合谱元数值方法的验证和收敛性研究
- DOI:10.1016/j.jcpx.2021.100084
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Xu, YiQin;Peet, Yulia T
- 通讯作者:Peet, Yulia T
Optimized hydrodynamic interactions in phalanx school arrays of accelerated thunniform swimmers
- DOI:10.1088/1402-4896/acb859
- 发表时间:2023-02
- 期刊:
- 影响因子:2.9
- 作者:Ahmed Abouhussein;Yulia V. Peet
- 通讯作者:Ahmed Abouhussein;Yulia V. Peet
Computational framework for efficient high-fidelity optimization of bio-inspired propulsion and its application to accelerating swimmers
- DOI:10.1016/j.jcp.2023.112038
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Ahmed Abouhussein;Y. Peet
- 通讯作者:Ahmed Abouhussein;Y. Peet
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yulia Peet其他文献
Yulia Peet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yulia Peet', 18)}}的其他基金
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
- 批准号:
2345157 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Collaborative Research: Dust Entrainment Processes by Convective Vortices and Localized Turbulent Structures: Experimental and Numerical Study
合作研究:对流涡旋和局部湍流结构的粉尘夹带过程:实验和数值研究
- 批准号:
2207115 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
CAREER: Interaction of Turbulence with Flexible Surfaces: Coherent Structures and Near-Wall Dynamics
职业:湍流与柔性表面的相互作用:相干结构和近壁动力学
- 批准号:
1944568 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Improving Statistical Convergence in Direct Numerical Simulations by Exploring Large-Scale Structures Organization and Symmetry
通过探索大规模结构组织和对称性来提高直接数值模拟中的统计收敛性
- 批准号:
1707075 - 财政年份:2017
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Wind Turbine Array Performance Based on Coupling CFD with Doppler Lidar Measurements
基于 CFD 与多普勒激光雷达测量耦合的风力涡轮机阵列性能
- 批准号:
1335868 - 财政年份:2013
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Multidomain and Integrative Capabilities for Large-Scale Systems Simulations with High-Order Methods
使用高阶方法进行大规模系统仿真的多域和集成功能
- 批准号:
1250124 - 财政年份:2012
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
FuSe: Bio-inspired sensorimotor control for robotic locomotion with neuromorphic architectures using beyond-CMOS materials and devices
FuSe:使用超越 CMOS 材料和设备的神经形态架构的机器人运动仿生感觉运动控制
- 批准号:
2328815 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Discovery Launch Supplement
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
RGPIN-2022-03410 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Discovery Grants Program - Individual
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
RGPIN-2022-03410 - 财政年份:2022
- 资助金额:
$ 30.5万 - 项目类别:
Discovery Grants Program - Individual
Soft and Bio-Inspired Legged Locomotion for Climbing in Extreme Environments
柔软且仿生的腿式运动,适合在极端环境中攀爬
- 批准号:
2433806 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Studentship
Development of a quadruped robot with bio-inspired mechanisms for highly efficient dynamic locomotion
开发具有仿生机制的四足机器人,实现高效动态运动
- 批准号:
20K22389 - 财政年份:2020
- 资助金额:
$ 30.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Bio-inspired Smart Attachment and Adaptive Neuromechanical Control for Highly Efficient Locomotion and Adaptation to an Autonomous Climbing Robot
仿生智能附件和自适应神经机械控制可实现自主攀爬机器人的高效运动和适应
- 批准号:
410547361 - 财政年份:2019
- 资助金额:
$ 30.5万 - 项目类别:
Research Grants
Bio-inspired propulsors for efficient and high-speed locomotion, and energy harvesting
用于高效高速运动和能量收集的仿生推进器
- 批准号:
487807-2016 - 财政年份:2017
- 资助金额:
$ 30.5万 - 项目类别:
Postdoctoral Fellowships
Bio-inspired efficient pulsatile locomotion
仿生高效脉动运动
- 批准号:
1604876 - 财政年份:2016
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
CAREER: Numerical Investigations of Biological and Bio-inspired Locomotion
职业:生物和仿生运动的数值研究
- 批准号:
0645228 - 财政年份:2007
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant