Forbidding Induced Subgraphs: Structure and Properties
禁止诱导子图:结构和性质
基本信息
- 批准号:1763817
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to study a number of well-known open problems in graph theory, as well as new problems suggested by them. The proposed questions are all related to the study of graphs with certain forbidden substructures. The line of inquiry that guides the research is: what is the global difference between general graphs and graphs that do not contain a particular substructure? These problems have been open for a while, but the PI and her collaborators have recently made progress on most of them. It is only now that a global picture is coming to light, and it seems likely that methods used for some of the problems can carry over to others. Exploring this crossover of ideas will undoubtedly lead to the development of new methods and approaches that were too far out of reach before, and are likely to allow further exciting developments.The focus of the project is on the influence of excluding an induced subgraph (or a family of them) on the structure of a graph. Specifically the PI and her collaborators plan to explore the following aspects to this question: the connections between the clique number and the chromatic number, the complexity of the graph coloring problem, the structure of minimal obstructions to colorability, the presence in a graph of large tightly structured subgraphs (the Erdos-Hajnal conjecture and its variants), and more.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究图论中一些著名的公开问题,以及由它们提出的新问题。所提出的问题都与具有某些禁止子结构的图的研究有关。指导这项研究的研究思路是:一般图形和不包含特定子结构的图形之间的总体差异是什么?这些问题已经解决了一段时间,但PI和她的合作者最近在大多数问题上取得了进展。直到现在,一幅全球图景才浮出水面,解决其中一些问题的方法似乎可能会延续到其他问题上。探索这种思想的交叉无疑将导致以前遥不可及的新方法和途径的发展,并可能允许进一步令人兴奋的发展。该项目的重点是排除一个诱导子图(或它们的一族)对图结构的影响。具体地说,PI和她的合作者计划探索这个问题的以下方面:集团数和色数之间的联系,图着色问题的复杂性,可着色性的最小障碍的结构,大型紧密结构子图(鄂尔多斯-哈杰纳尔猜想及其变种)图中的存在,以及更多。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting an Odd Hole
- DOI:10.1145/3375720
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:M. Chudnovsky;A. Scott;P. Seymour;S. Spirkl
- 通讯作者:M. Chudnovsky;A. Scott;P. Seymour;S. Spirkl
Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree
归纳子图和树分解 I. 有界度的偶孔无图
- DOI:10.1016/j.jctb.2022.05.009
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abrishami, Tara;Chudnovsky, Maria;Vušković, Kristina
- 通讯作者:Vušković, Kristina
Quasi-polynomial time approximation schemes for the Maximum Weight Independent Set Problem in H-free graphs
无H图中最大权独立集问题的拟多项式时间逼近方案
- DOI:10.1137/1.9781611975994.139
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Chudnovsky, Maria.;Pillipczuk, Marcin.;Pillipczuk, Mihal;and Thomasse, Stephan.
- 通讯作者:and Thomasse, Stephan.
Erdős-Hajnal for cap-free graphs
ErdÅs-Hajnal 用于无上限图
- DOI:10.1016/j.jctb.2021.07.006
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chudnovsky, Maria;Seymour, Paul
- 通讯作者:Seymour, Paul
Induced equators in flag spheres
旗球中的感应赤道
- DOI:10.1016/j.jcta.2020.105283
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Chudnovsky, Maria;Nevo, Eran
- 通讯作者:Nevo, Eran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Chudnovsky其他文献
Detecting an induced net subdivision
检测诱导网络细分
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Maria Chudnovsky;Paul D. Seymour;Nicolas Trotignon - 通讯作者:
Nicolas Trotignon
LOCAL STRUCTURE IN EVEN-HOLE-FREE GRAPH OF LARGE
大偶无孔图中的局部结构
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bogdan Alecu;Maria Chudnovsky;§. Sepehrhajebi;§∥ Andsophiespirkl - 通讯作者:
§∥ Andsophiespirkl
Solution of three problems of Cornuéjols
- DOI:
10.1016/j.jctb.2007.05.004 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Paul Seymour - 通讯作者:
Paul Seymour
Finding minimum clique capacity
- DOI:
10.1007/s00493-012-2891-9 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:1.000
- 作者:
Maria Chudnovsky;Sang-Il Oum;Paul Seymour - 通讯作者:
Paul Seymour
Graphs with no even holes and no sector wheels are the union of two chordal graphs
没有偶孔且没有扇形轮的图是两个弦图的并集
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tara Abrishami;Eli Berger;Maria Chudnovsky;Shira Zerbib - 通讯作者:
Shira Zerbib
Maria Chudnovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Chudnovsky', 18)}}的其他基金
Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
- 批准号:
2348219 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
DMS-EPSRC: The Power of Graph Structure
DMS-EPSRC:图结构的力量
- 批准号:
2120644 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1550991 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1265803 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
炎性反应中巨噬细胞激活诱导死亡(activation-induced cell death,AICD)的机理研究
- 批准号:30330260
- 批准年份:2003
- 资助金额:105.0 万元
- 项目类别:重点项目
相似海外基金
Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
- 批准号:
2348219 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
- 批准号:
2154169 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
RGPIN-2020-03912 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
DMS-EPSRC INDUCED SUBGRAPHS AND GRAPH STRUCTURE
DMS-EPSRC 导出的子图和图结构
- 批准号:
EP/X013642/1 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Research Grant
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
RGPIN-2020-03912 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
RGPIN-2020-03912 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Structure and algorithms for graphs with forbidden induced subgraphs
具有禁止诱导子图的图的结构和算法
- 批准号:
DGECR-2020-00524 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Launch Supplement
How do forbidden induced subgraphs impact global phenomena in graphs?
禁止诱导子图如何影响图中的全局现象?
- 批准号:
RGPIN-2017-06673 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual