DMS-EPRSC: Induced Subgraphs and Graph Structure
DMS-EPRSC:归纳子图和图结构
基本信息
- 批准号:2154169
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a DMS-EPRSC project in structural graph theory. There are two natural ways to describe the local structure of a graph: by asking what graphs occur as minors, and by asking what graphs occur as induced subgraphs. The theory of graph minors was developed by Robertson and Seymour, and gives a very satisfactory picture. However, the picture for induced subgraphs is more complex and much less is known. The goal of this project is to extend the theory of induced subgraphs. What can we say about the graphs that have no induced subgraph of some special type? Graduate students will be trained as part of the project.A central problem in the field is the Erdos-Hajnal conjecture. It has been known since the results of Ramsey and of Erdos and of Szekeres in the 1930s that every graph has a clique or stable set of size at least logarithmic in the number of vertices. However, Erdos and Hajnal conjectured in the 1980s that forbidding any induced subgraph H causes a dramatic jump, resulting in cliques or stable sets of polynomial size.Recently the PIs (joint with two others) settled the smallest open case, which had been a famous question since the problem was first proposed in the 1980's; and even more recently they have made substantial progress on the next smallest case. These two steps both used new techniques, and it is hoped that these techniques will lead to further progress on this and related problems. More broadly, what is the structure that results when some graph is excluded as an induced subgraph? We don't expect to get a structure that is necessary and sufficient for excluding a particular graph (this already seems hopeless for excluding a six-vertex graph); but it is more likely that there is a structure that is necessary for excluding a given graph and sufficient for excluding some larger graph. This would be the first step towards a general structural theory for induced subgraphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个DMS-EPRSC的结构图论项目。有两种自然的方法来描述图的局部结构:通过询问哪些图作为子图出现,以及通过询问哪些图作为导出子图出现。图的子式理论是由Robertson和Seymour发展起来的,并给出了一个非常令人满意的图像。然而,诱导子图的图像是更复杂的,知道得更少。这个项目的目标是推广导出子图的理论。对于没有某种特殊类型的导出子图的图,我们能说些什么呢?作为项目的一部分,研究生将接受培训。该领域的一个中心问题是埃尔多斯-哈伊纳尔猜想。人们已经知道,因为结果拉姆齐和鄂尔多斯和Szekeres在20世纪30年代,每个图有一个团或稳定集的大小至少对数的顶点数。 然而,Erdos和Hajnal在20世纪80年代推测,禁止任何诱导子图H会导致急剧的跳跃,从而产生团或多项式大小的稳定集。最近,PI(与另外两个PI联合)解决了最小的开放案例,这一直是一个著名的问题自该问题于20世纪80年代首次提出以来;最近,他们在下一个最小案例上取得了实质性进展。这两个步骤都使用了新的技术,希望这些技术将导致进一步的进展,这一点和相关的问题。更广泛地说,当某个图被排除为导出子图时,其结构是什么?我们不期望得到一个结构,它是排除一个特定图的必要和充分条件(这对于排除一个六顶点图来说已经是无望的了);但是更有可能的是,存在一个结构,它是排除一个给定图的必要条件,并且足以排除一些更大的图。这将是迈向诱导子图的一般结构理论的第一步。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Erdős–Hajnal for graphs with no 5‐hole
ErdÅsâHajnal 用于没有 5 孔的图
- DOI:10.1112/plms.12504
- 发表时间:2023
- 期刊:
- 影响因子:1.8
- 作者:Chudnovsky, Maria;Scott, Alex;Seymour, Paul;Spirkl, Sophie
- 通讯作者:Spirkl, Sophie
Proof of a conjecture of Plummer and Zha
Plummer 和 Zha 猜想的证明
- DOI:10.1002/jgt.22926
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Chudnovsky, Maria;Seymour, Paul
- 通讯作者:Seymour, Paul
Pure pairs. VII. Homogeneous submatrices in 0/1-matrices with a forbidden submatrix
纯对。
- DOI:10.1016/j.jctb.2023.03.001
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Scott, Alex;Seymour, Paul;Spirkl, Sophie
- 通讯作者:Spirkl, Sophie
Pure Pairs. V. Excluding Some Long Subdivision
纯对。
- DOI:10.1007/s00493-023-00025-8
- 发表时间:2023
- 期刊:
- 影响因子:1.1
- 作者:Scott, Alex;Seymour, Paul;Spirkl, Sophie
- 通讯作者:Spirkl, Sophie
Polynomial bounds for chromatic number VII. Disjoint holes
色数 VII 的多项式界限。
- DOI:10.1002/jgt.22987
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Chudnovsky, Maria;Scott, Alex;Seymour, Paul;Spirkl, Sophie
- 通讯作者:Spirkl, Sophie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Seymour其他文献
Induced Subgraph Density. I. A loglog Step Towards Erd̋s–Hajnal
诱导子图密度 I. 迈向 Erd̋s–Hajnal 的对数日志步骤。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1
- 作者:
Matija Bucić;Tung H. Nguyen;Alex Scott;Paul Seymour - 通讯作者:
Paul Seymour
Excluding pairs of graphs
- DOI:
10.1016/j.jctb.2014.01.001 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Alex Scott;Paul Seymour - 通讯作者:
Paul Seymour
Trees and almost-linear stable sets
树和近线性稳定集
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Tung H. Nguyen;Alex Scott;Paul Seymour - 通讯作者:
Paul Seymour
Solution of three problems of Cornuéjols
- DOI:
10.1016/j.jctb.2007.05.004 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Paul Seymour - 通讯作者:
Paul Seymour
Finding minimum clique capacity
- DOI:
10.1007/s00493-012-2891-9 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:1.000
- 作者:
Maria Chudnovsky;Sang-Il Oum;Paul Seymour - 通讯作者:
Paul Seymour
Paul Seymour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Seymour', 18)}}的其他基金
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1265563 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Tournament Immersion and Rao's Conjecture
锦标赛沉浸与拉奥猜想
- 批准号:
0901075 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FRG: Collaborative Research: The Four-Color Theorem and Beyond
FRG:协作研究:四色定理及其他
- 批准号:
0354465 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
EPRSC Resource Only Strategic Equipment: the Warwick Analytical Science Centre
EPRSC 仅资源战略设备:沃里克分析科学中心
- 批准号:
EP/V007688/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Phase III of The Directed Assembly EPRSC Grand Challenge Network: From Discovery to Translation
定向组装EPRSC大挑战网络第三阶段:从发现到翻译
- 批准号:
EP/P007279/2 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Phase III of The Directed Assembly EPRSC Grand Challenge Network: From Discovery to Translation
定向组装EPRSC大挑战网络第三阶段:从发现到翻译
- 批准号:
EP/P007279/1 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Research Grant
NSF/EPRSC joint proposal on the effect of constraint and thickness on octahedral tilt transitions in perovskite structured thin films
NSF/EPRSC 关于钙钛矿结构薄膜中约束和厚度对八面体倾斜跃迁影响的联合提案
- 批准号:
EP/D067049/1 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Research Grant