DMS-EPSRC: The Power of Graph Structure
DMS-EPSRC:图结构的力量
基本信息
- 批准号:2120644
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is jointly supported by NSF in the US and EPSRC in the UK. The PIs, one in the US and the other in UK, will work on questions at the interface of graph theory and theoretical computer science. The line of inquiry that guides this research project is the following: what is the global difference between general graphs and graphs that do not contain particular configurations (known as an induced subgraphs)? This is a fundamental question and the mathematical understanding of it is very limited. The project will study the impact of the absence of those configurations on algorithmic properties of the graph: what questions (that are known to be difficult in general) become tractable if we are given this kind of additional information about the input? This project will also provide graduate student training both in the US and UK.In recent years significant progress has been made in the theoretical computer science community toward designing methods that address NP-complete problems in graph theory when certain restrictions are placed on the input. These are beautiful and powerful results that have significantly deepened the understanding of the limits of efficient algorithms. This project aims to combine the power of structural graph theory with these recent developments and apply them to several longstanding open questions. The project will study the impact of excluding an induced subgraph on the complexity of such well-known algorithmic tasks as finding the chromatic number, the stability number, and the clique number of a graph (as well as their weighted analogues). Progress on any of these aspects will advance the understanding of the structure of families of graphs defined by forbidden induced subgraphs, contribute to answering important open questions, and have significant algorithmic consequences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目由美国国家科学基金会和英国EPSRC共同支持。一个在美国,一个在英国,PI将在图论和理论计算机科学的界面上处理问题。指导这一研究项目的研究思路如下:一般图和不包含特定结构的图(称为诱导子图)之间的全局差异是什么?这是一个基本问题,对它的数学理解是非常有限的。该项目将研究这些配置的缺失对图的算法属性的影响:如果我们被给予关于输入的这种额外信息,哪些问题(已知通常很难)变得容易处理?该项目还将在美国和英国提供研究生培训。近年来,理论计算机科学界在设计方法方面取得了重大进展,当输入受到一定限制时,这些方法可以解决图论中的NP完全问题。这些都是美丽而强大的结果,大大加深了人们对高效算法局限性的理解。这个项目旨在将结构图理论的力量与这些最新的发展结合起来,并将它们应用于几个长期悬而未决的问题。该项目将研究排除诱导子图对诸如寻找图的色数、稳定数和团数(以及它们的加权类似物)等众所周知的算法任务的复杂性的影响。在这些方面的任何进展都将促进对由禁用诱导子图定义的图族结构的理解,有助于回答重要的公开问题,并具有重要的算法结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stable sets in flag spheres
旗球中的稳定集
- DOI:10.1016/j.ejc.2023.103699
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Chudnovsky, Maria;Nevo, Eran
- 通讯作者:Nevo, Eran
Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree
归纳子图和树分解 I. 有界度的偶孔无图
- DOI:10.1016/j.jctb.2022.05.009
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abrishami, Tara;Chudnovsky, Maria;Vušković, Kristina
- 通讯作者:Vušković, Kristina
Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth
归纳子图和树分解 III。
- DOI:10.19086/aic.2022.6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chudnovsky, Maria;Abrishami, Tara;Hajebi, Sepehr;Spirkl, Sophie
- 通讯作者:Spirkl, Sophie
Polynomial-time algorithm for Maximum Independent Set in bounded-degree graphs with no long induced claws
无长诱导爪有界度图中最大独立集的多项式时间算法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chudnovsky, M. with
- 通讯作者:Chudnovsky, M. with
Polynomial bounds for chromatic number VI. Adding a four-vertex path
色数 VI 的多项式界限。
- DOI:10.1016/j.ejc.2023.103710
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Chudnovsky, Maria;Scott, Alex;Seymour, Paul;Spirkl, Sophie
- 通讯作者:Spirkl, Sophie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Chudnovsky其他文献
Detecting an induced net subdivision
检测诱导网络细分
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Maria Chudnovsky;Paul D. Seymour;Nicolas Trotignon - 通讯作者:
Nicolas Trotignon
LOCAL STRUCTURE IN EVEN-HOLE-FREE GRAPH OF LARGE
大偶无孔图中的局部结构
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bogdan Alecu;Maria Chudnovsky;§. Sepehrhajebi;§∥ Andsophiespirkl - 通讯作者:
§∥ Andsophiespirkl
Solution of three problems of Cornuéjols
- DOI:
10.1016/j.jctb.2007.05.004 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Maria Chudnovsky;Paul Seymour - 通讯作者:
Paul Seymour
Finding minimum clique capacity
- DOI:
10.1007/s00493-012-2891-9 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:1.000
- 作者:
Maria Chudnovsky;Sang-Il Oum;Paul Seymour - 通讯作者:
Paul Seymour
Graphs with no even holes and no sector wheels are the union of two chordal graphs
没有偶孔且没有扇形轮的图是两个弦图的并集
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tara Abrishami;Eli Berger;Maria Chudnovsky;Shira Zerbib - 通讯作者:
Shira Zerbib
Maria Chudnovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Chudnovsky', 18)}}的其他基金
Forbidding Induced Subgraphs: Decompositions, Coloring and Algorithms
禁止诱导子图:分解、着色和算法
- 批准号:
2348219 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Forbidding Induced Subgraphs: Structure and Properties
禁止诱导子图:结构和性质
- 批准号:
1763817 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1550991 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Collaborative Research: cliques, stable sets and approximate structure
合作研究:派系、稳定集和近似结构
- 批准号:
1265803 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
- 批准号:
2036915 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
DMS-EPSRC - The Power of Graph Structure
DMS-EPSRC - 图结构的力量
- 批准号:
EP/V002813/1 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
- 批准号:
2036740 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
ECCS - EPSRC Development of uniform, low power, high density resistive memory by vertical interface and defect design
ECCS - EPSRC 通过垂直接口和缺陷设计开发统一、低功耗、高密度电阻式存储器
- 批准号:
EP/T012218/1 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902644 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
EPSRC Centre for Doctoral Training in Future Propulsion and Power
EPSRC 未来推进和动力博士培训中心
- 批准号:
EP/S023003/1 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Training Grant
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902623 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
EPSRC Challenge Network in Automotive Power Electronics
EPSRC 汽车电力电子挑战网络
- 批准号:
EP/P00136X/1 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant