Combinatorial Properties of Convex Sets and Measures in Euclidean spaces

欧几里得空间中凸集和测度的组合性质

基本信息

  • 批准号:
    1764237
  • 负责人:
  • 金额:
    $ 10.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Discrete geometry and topological combinatorics are important areas of mathematics. They highlight connections between different areas of mathematics in novel ways. The research in these subjects has applications in computer science, such as in search algorithms and optimization. This award will support the PI's research to develop new mathematical methods to solve problems on the boundary of combinatorics and topology. Problems in discrete geometry are often easy to state, and a good subject for popularization of mathematics. The PI will aim at involving undergraduate students in his research. The research of this project will focus on three main types of open problems. These type of problems highlight different aspects of discrete geometry and are multi-disciplinary; involving combinatorics, topology and linear algebra. As they are closely related, progress in one area will benefit the research in the others. The first kind of problems, partitions of measures, is a cornerstone of the interaction of equivariant topology and discrete geometry. The PI will focus on the effect of additional geometric constraints to classic problems in the field. The second is Tverberg theory, which focuses on understanding the convex hulls of finite sets of points from a combinatorial point of view. The PI has extended the linear-algebraic methods used for this area, and aims at working on topological versions of recent results. The third kind focuses on understanding the intersection structure of finite families of convex sets in Euclidean spaces. The work will focus on continuing a recent trend of developing quantitative versions of classic results, such as Helly-type theorems. Several of these problems have as additional motivation applications in computer science and other areas of mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离散几何和拓扑组合学是数学的重要领域。 它们以新颖的方式突出了不同数学领域之间的联系。 这些学科的研究在计算机科学中有应用,如搜索算法和优化。 该奖项将支持PI的研究,以开发新的数学方法来解决组合学和拓扑学的边界问题。 离散几何中的问题往往易于表述,是数学普及的好课题。PI的目标是让本科生参与他的研究。该项目的研究将集中在三个主要类型的开放问题。 这些类型的问题突出了离散几何的不同方面,并且是多学科的;涉及组合学,拓扑学和线性代数。 由于它们密切相关,一个领域的进展将有利于其他领域的研究。 第一类问题,划分措施,是一个基石的互动等变拓扑和离散几何。 PI将专注于该领域的经典问题的额外几何约束的影响。 第二个是Tverberg理论,它侧重于从组合的角度理解有限点集的凸包。 PI扩展了用于这一领域的线性代数方法,并致力于最近结果的拓扑版本。 第三类着重于理解欧氏空间中凸集的有限族的交结构。 这项工作将集中在继续最近的趋势,发展定量版本的经典结果,如海利型定理。 这些问题中有几个在计算机科学和数学的其他领域的应用作为额外的动机。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pablo Soberon Bravo其他文献

Pablo Soberon Bravo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pablo Soberon Bravo', 18)}}的其他基金

Sustained Cascade Mentoring in Mathematics
数学的持续级联辅导
  • 批准号:
    2325822
  • 财政年份:
    2024
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
  • 批准号:
    2237324
  • 财政年份:
    2023
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Continuing Grant
Topology and Linear Algebra in Discrete Geometry
离散几何中的拓扑和线性代数
  • 批准号:
    2054419
  • 财政年份:
    2021
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
  • 批准号:
    1851420
  • 财政年份:
    2018
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric inequalities of dual volumes of convex bodies and properties of additions of convex bodies derived from the inequalities
凸体对偶体积的几何不等式及由不等式导出的凸体相加性质
  • 批准号:
    20K14320
  • 财政年份:
    2020
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
  • 批准号:
    1851420
  • 财政年份:
    2018
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Growth processes and low-dimensional physical properties on ultrathin high-k materials film fabricated on concave-convex Si surface by spectroscopic observation
光谱观察凹凸硅表面超薄高k材料薄膜的生长过程及低维物理性质
  • 批准号:
    17K06030
  • 财政年份:
    2017
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tribological properties and the underlying mechanism of nanometer-thick liquid films with fine functional concavo-convex patterns
具有精细功能凹凸图案的纳米厚液膜的摩擦学特性及其潜在机制
  • 批准号:
    26289027
  • 财政年份:
    2014
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometric, convexity and regularity properties of certain classes of convex bodies
某些类凸体的几何、凸性和正则性性质
  • 批准号:
    1100657
  • 财政年份:
    2011
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Standard Grant
Combinatorial properties on convex sets by a finite point set
有限点集凸集的组合性质
  • 批准号:
    21540145
  • 财政年份:
    2009
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of the Limit Cycle in Relaxed Projections onto Convex Sets
凸集松弛投影中极限环的性质
  • 批准号:
    303328-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Postgraduate Scholarships - Master's
Properties of the Limit Cycle in Relaxed Projections onto Convex Sets
凸集松弛投影中极限环的性质
  • 批准号:
    303328-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Combinatorial properties on convex polygons by a point set
点集凸多边形的组合属性
  • 批准号:
    13640137
  • 财政年份:
    2001
  • 资助金额:
    $ 10.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Covering and Intersection Properties of Convex Sets
凸集的覆盖和交集性质
  • 批准号:
    7033991
  • 财政年份:
    1970
  • 资助金额:
    $ 10.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了