Topology and Linear Algebra in Discrete Geometry
离散几何中的拓扑和线性代数
基本信息
- 批准号:2054419
- 负责人:
- 金额:$ 19.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discrete geometry is the study of combinatorial properties of finite families of geometric objects. Results in this field often have applications to search algorithms, data classification, and optimization. The methods used to answer discrete geometry questions can be wildly different. Some are based on linear algebra, where the rigid structure of the space is important. Some are based on topology, and the results hold up to smooth deformations of the objects involved. This research project aims to develop new ways to use topological and linear algebraic methods in discrete geometry to expand the connections between combinatorics and other fields. The driving motivation is to understand what makes a combinatorial problem amenable to techniques from topology, and what makes it amenable to techniques from linear algebra. The project also includes topics that can be used to mentor undergraduate students in research. The project focuses on questions related to finite families of convex sets. The PI plans to develop new ways to apply topological methods to Tverberg-type problems, related to a longstanding "colorful" version of Tverberg’s theorem. The recent progress in quantitative Helly-type theorems can help build a bridge between the analytic side of convexity and linear programming, which the PI aims to formalize. Several of the questions under study aim to generalize classic results in extremal combinatorics to high-dimensional Euclidean spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离散几何是研究几何对象的有限族的组合性质。这一领域的成果通常应用于搜索算法、数据分类和优化。用于回答离散几何问题的方法可能大不相同。有些是基于线性代数,其中空间的刚性结构很重要。有些基于拓扑,结果支持所涉及对象的平滑变形。本研究计划旨在开发新的方法,在离散几何中使用拓扑和线性代数方法,以扩大组合学和其他领域之间的联系。驱动的动机是理解是什么使组合问题适合于拓扑技术,以及是什么使它适合于线性代数技术。该项目还包括可用于指导本科生进行研究的主题。该项目的重点是与凸集的有限族相关的问题。PI计划开发新的方法将拓扑方法应用于Tverberg型问题,这与Tverberg定理的长期“丰富多彩”版本有关。最近的进展,定量Helly型定理可以帮助建立一个桥梁之间的分析方面的凸性和线性规划,这是PI的目标形式化。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fair distributions for more participants than allocations
公平分配给更多参与者而不是分配
- DOI:10.1090/bproc/129
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Soberón, Pablo
- 通讯作者:Soberón, Pablo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Soberon Bravo其他文献
Pablo Soberon Bravo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pablo Soberon Bravo', 18)}}的其他基金
Sustained Cascade Mentoring in Mathematics
数学的持续级联辅导
- 批准号:
2325822 - 财政年份:2024
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
- 批准号:
2237324 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Continuing Grant
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
- 批准号:
1764237 - 财政年份:2018
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Combinatorial Properties of Convex Sets and Measures in Euclidean spaces
欧几里得空间中凸集和测度的组合性质
- 批准号:
1851420 - 财政年份:2018
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 19.51万 - 项目类别:
Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 19.51万 - 项目类别:
Research Grant
Developing Virtual Reality-Mediated Representational Tools for Supporting and Enhancing Deep Mathematical Understanding of Linear Algebra Relationships
开发虚拟现实介导的表示工具来支持和增强对线性代数关系的深入数学理解
- 批准号:
2315756 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
III: Medium: Linear Algebra Operators in Databases to Support Analytic and Machine-Learning Workloads
III:中:数据库中的线性代数运算符支持分析和机器学习工作负载
- 批准号:
2312991 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
DMS-EPSRC:Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
2313434 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309445 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Development of an Inquiry-based curriculum for linear algebra as a subject-specialized course in mathematics teacher training
作为数学教师培训学科专业课程的线性代数探究式课程的开发
- 批准号:
23K02415 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Elements: A Cyberlaboratory for Randomized Numerical Linear Algebra
合作研究:Elements:随机数值线性代数网络实验室
- 批准号:
2309446 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
- 批准号:
RGPIN-2020-04276 - 财政年份:2022
- 资助金额:
$ 19.51万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant