Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations

线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用

基本信息

  • 批准号:
    1764248
  • 负责人:
  • 金额:
    $ 16.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This research project studies fine quantitative behaviors of solutions to several classes of nonlinear partial differential equations (PDEs) that have connections and applications in several areas of mathematics such as analysis, PDEs, the calculus of variations, convex geometry, shape optimization, and fluid mechanics. They also appear in many areas of sciences and engineering such as economics, urban planning, meteorology, and geometric optics. For example, the Monge-Ampere type equations investigated in this project arise naturally in the optimal transportation problems (which consist of finding the least expensive way to transport a distribution of mass from one location to another) in economics and in traffic network planning in cities, in the design of reflector antennae in geometric optics and in the weather forecast models used in meteorology. The PDEs investigated in this project have two distinguished features: their key structural quantities could be possibly extremely small (degenerate) or extremely large (singular) and their settings frequently involve irregular geometries. Classical methods are usually inadequate in handling these equations and thus, their analysis calls for new methods, fresh perspectives and advancing knowledge in many fields of mathematics. The main goal of the project aims at providing deep insights into these problems, discovering novel methodologies to tackle them as well as revealing unexpected connections with other areas of mathematics. The results of this project will be widely disseminated via publications of research papers and lecture notes, via presentations at national and international venues, and via training of graduate students.This project, in the field of analysis and partial differential equations (PDEs), focuses on regularity properties of solutions to the linearized Monge-Ampere (LMA) and degenerate Monge-Ampere equations and their applications in nonlinear PDEs arising from convex geometry, optimal transportation, and meteorology. The purpose of this project is to obtain fine and higher order regularity properties of some important classes of LMA and degenerate Monge-Ampere equations and apply them to several interesting problems in analysis, geometry, and PDEs. More specifically, the objectives of the project are to: (i) investigate higher order derivatives estimates for LMA equations with lower order terms having low regularity and their applications in the semigeostrophic equations as well as polar factorizations; (ii) study the sharp Sobolev estimates for the Monge-Ampere equation and its related maximal functions; (iii) settle a shape optimization problem concerning the minimum of the Monge-Ampere eigenvalue on convex domains subject to a volume constraint; and (iv) establish global regularity for degenerate Monge-Ampere equations on nonsmooth domains and the second boundary value problem for degenerate Monge-Ampere equations. The principal investigator and his collaborators have recently developed new methods and techniques including the Green function estimates, localization technique, iteration argument, sliding paraboloids method and geometry of the Monge-Ampere equation to solve some open problems related to these proposed problems. These techniques are expected to be further developed and strengthened to successfully attack the problems proposed in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目研究几类非线性偏微分方程(PDE)的解的精细定量行为,这些方程在数学的几个领域中有联系和应用,如分析,PDE,变分法,凸几何,形状优化和流体力学。它们也出现在许多科学和工程领域,如经济学,城市规划,气象学和几何光学。例如,在本项目中研究的Monge-Ampere型方程自然出现在经济学和城市交通网络规划中的最优运输问题(包括找到将质量分布从一个位置运输到另一个位置的最便宜的方式)中,在几何光学中的反射天线的设计中,以及在气象学中使用的天气预报模型中。在这个项目中研究的偏微分方程有两个显着的特点:他们的关键结构量可能非常小(退化)或非常大(奇异),他们的设置经常涉及不规则的几何形状。经典的方法通常不足以处理这些方程,因此,他们的分析需要新的方法,新的观点和先进的知识在许多数学领域。该项目的主要目标是深入了解这些问题,发现解决这些问题的新方法,并揭示与其他数学领域的意想不到的联系。该项目的成果将通过出版研究论文和演讲稿、在国家和国际会议上发表演讲以及培训研究生等方式广泛传播。该项目在分析和偏微分方程领域,侧重于正则性的解决方案,以线性蒙日安培(LMA)和退化蒙日-安培方程及其在凸几何、最优运输和气象学中的非线性偏微分方程中的应用。这个项目的目的是获得一些重要的LMA和退化的Monge-Ampere方程的精细和高阶正则性,并将它们应用于分析,几何和偏微分方程中的一些有趣的问题。具体地说,本项目的目标是:(i)研究具有低正则性低阶项的LMA方程的高阶导数估计及其在半地转方程和极分解中的应用;(ii)研究Monge-Ampere方程及其相关极大函数的Sobolev估计;(iii)解决凸域上受体积约束的Monge-Ampere特征值最小的形状优化问题;(iv)建立了非光滑区域上退化Monge-Ampere方程的整体正则性和退化Monge-Ampere方程的第二边值问题.主要研究者和他的合作者最近开发了新的方法和技术,包括绿色函数估计,本地化技术,迭代参数,滑动抛物面方法和Monge-Ampere方程的几何形状,以解决与这些问题相关的一些公开问题。这些技术有望得到进一步发展和加强,以成功地解决本项目中提出的问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singular Abreu Equations and Minimizers of Convex Functionals with a Convexity Constraint
奇异 Abreu 方程和具有凸性约束的凸泛函极小化器
On approximating minimizers of convex functionals with a convexity constraint by singular Abreu equations without uniform convexity
用无均匀凸性的奇异 Abreu 方程逼近带凸性约束的凸泛函极小值
On singular Abreu equations in higher dimensions
高维奇异 Abreu 方程
Polynomial decay in $W^{2,\varepsilon}$ estimates for viscosity supersolutions of fully nonlinear elliptic equations
全非线性椭圆方程粘度超解的 $W^{2,varepsilon}$ 多项式衰减估计
Global Hölder estimates for 2D linearized Monge–Ampère equations with right-hand side in divergence form
右侧为散度形式的二维线性蒙日安培方程的全局 Hölder 估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nam Le其他文献

Engineering the work function and interlayer spacing of MXene via the intercalation process for efficient photoelectrochemical water splitting of CuWO<sub>4</sub>
  • DOI:
    10.1016/j.ijhydene.2024.10.076
  • 发表时间:
    2024-11-11
  • 期刊:
  • 影响因子:
  • 作者:
    Nam Le;Duc Viet Nguyen;Jin Suk Chung;Seung Hyun Hur
  • 通讯作者:
    Seung Hyun Hur
Knowledge graph embedding by relational rotation and complex convolution for link prediction
  • DOI:
    10.1016/j.eswa.2022.119122
  • 发表时间:
    2022-11-03
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Thanh Le;Nam Le;Bac Le
  • 通讯作者:
    Bac Le
EUMSSI Team at the MediaEval Person Discovery Challenge 2016
EUMSSI 团队参加 2016 年 MediaEval 人物发现挑战赛
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nam Le;S. Meignier;J. Odobez
  • 通讯作者:
    J. Odobez
Complexity measures in Genetic Programming learning: A brief review
遗传编程学习中的复杂性测量:简要回顾
Literature Review on the Barriers to Online Learning during Covid-19 Pandemic
Covid-19大流行期间在线学习障碍的文献综述
  • DOI:
    10.4236/oalib.1109219
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nam Le
  • 通讯作者:
    Nam Le

Nam Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nam Le', 18)}}的其他基金

Partial Differential Equations With and Without Convexity Constraints
有和没有凸性约束的偏微分方程
  • 批准号:
    2054686
  • 财政年份:
    2021
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
The Linearized Monge-Ampere Equation and Applications in Nonlinear, Geometric Partial Differential Equations
线性蒙日-安培方程及其在非线性几何偏微分方程中的应用
  • 批准号:
    1500400
  • 财政年份:
    2015
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant

相似海外基金

Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
  • 批准号:
    488763
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Operating Grants
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
  • 批准号:
    NE/X014134/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Research Grant
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
  • 批准号:
    2239668
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
  • 批准号:
    10797705
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
Topological Consequences of Distortion-type Estimates
失真型估计的拓扑后果
  • 批准号:
    2247469
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
  • 批准号:
    2306143
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
  • 批准号:
    2308063
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
al-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
  • 批准号:
    495568
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Miscellaneous Programs
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
  • 批准号:
    2886293
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了