Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations

线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用

基本信息

  • 批准号:
    1764248
  • 负责人:
  • 金额:
    $ 16.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This research project studies fine quantitative behaviors of solutions to several classes of nonlinear partial differential equations (PDEs) that have connections and applications in several areas of mathematics such as analysis, PDEs, the calculus of variations, convex geometry, shape optimization, and fluid mechanics. They also appear in many areas of sciences and engineering such as economics, urban planning, meteorology, and geometric optics. For example, the Monge-Ampere type equations investigated in this project arise naturally in the optimal transportation problems (which consist of finding the least expensive way to transport a distribution of mass from one location to another) in economics and in traffic network planning in cities, in the design of reflector antennae in geometric optics and in the weather forecast models used in meteorology. The PDEs investigated in this project have two distinguished features: their key structural quantities could be possibly extremely small (degenerate) or extremely large (singular) and their settings frequently involve irregular geometries. Classical methods are usually inadequate in handling these equations and thus, their analysis calls for new methods, fresh perspectives and advancing knowledge in many fields of mathematics. The main goal of the project aims at providing deep insights into these problems, discovering novel methodologies to tackle them as well as revealing unexpected connections with other areas of mathematics. The results of this project will be widely disseminated via publications of research papers and lecture notes, via presentations at national and international venues, and via training of graduate students.This project, in the field of analysis and partial differential equations (PDEs), focuses on regularity properties of solutions to the linearized Monge-Ampere (LMA) and degenerate Monge-Ampere equations and their applications in nonlinear PDEs arising from convex geometry, optimal transportation, and meteorology. The purpose of this project is to obtain fine and higher order regularity properties of some important classes of LMA and degenerate Monge-Ampere equations and apply them to several interesting problems in analysis, geometry, and PDEs. More specifically, the objectives of the project are to: (i) investigate higher order derivatives estimates for LMA equations with lower order terms having low regularity and their applications in the semigeostrophic equations as well as polar factorizations; (ii) study the sharp Sobolev estimates for the Monge-Ampere equation and its related maximal functions; (iii) settle a shape optimization problem concerning the minimum of the Monge-Ampere eigenvalue on convex domains subject to a volume constraint; and (iv) establish global regularity for degenerate Monge-Ampere equations on nonsmooth domains and the second boundary value problem for degenerate Monge-Ampere equations. The principal investigator and his collaborators have recently developed new methods and techniques including the Green function estimates, localization technique, iteration argument, sliding paraboloids method and geometry of the Monge-Ampere equation to solve some open problems related to these proposed problems. These techniques are expected to be further developed and strengthened to successfully attack the problems proposed in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目研究了对几类非线性偏微分方程(PDE)的溶液的精细定量行为,这些方程(PDE)在数学的多个领域(例如分析,PDE,PDE,pDES,均变异的计算,凸几何,形状优化和流体力学)中具有连接和应用。它们还出现在许多科学和工程领域,例如经济学,城市规划,气象学和几何光学。例如,该项目中研究的Monge-Ampere类型方程式自然出现在最佳运输问题(包括找到最便宜的方式,将质量分布从一个位置转移到另一个位置和城市的交通网络规划中,在几何学光学和天气模型中在气象学中使用反射型天线的设计。该项目中研究的PDE具有两个杰出的特征:它们的关键结构数量可能非常小(退化)或极大(单数),其设置经常涉及不规则的几何形状。经典方法通常在处理这些方程式时不足,因此,他们的分析要求在许多数学领域中使用新的方法,新的观点和提高知识。该项目的主要目标旨在为这些问题提供深入的见解,发现解决方案的新方法以及与其他数学领域的意外联系。该项目的结果将通过研究论文和讲座注释的出版物,国家和国际地点的介绍以及通过培训研究生进行广泛分散。该项目在分析和部分微分方程(PDES)领域(PDES),重点介绍解决方案的规则性属性,介绍解决方案对线性化的Monge-Monge-pampere(LMA)和其他典范的应用程序,以及他们的应用程序,以及他们的临时培养基,以实施范围,以实施培养基,并涉及他们的临时培养基,以实现跨越的范围,以实施范围和培养基。几何,最佳运输和气象。该项目的目的是获得一些重要类别的LMA和脱名的Monge-Ampere方程的罚款和高阶规则性能,并将其应用于分析,几何和PDE中的几个有趣的问题。更具体地说,该项目的目标是:(i)研究具有低规律性及其在半神经际方程中的较低阶段的LMA方程的高阶衍生物估计值以及极性因素化; (ii)研究Monge-Ampere方程及其相关最大功能的尖锐Sobolev估计; (iii)在凸面域上的最小值蒙格 - 安培特征值的最小值解决了形状优化问题; (iv)在非平滑域上建立退化蒙格 - 安培方程的全球规律性,而退化的monge-ampere方程的第二个边界值问题。首席研究人员及其合作者最近开发了新的方法和技术,包括绿色功能估算,本地化技术,迭代参数,滑动抛物面方法和Monge-Ampere方程的几何形状,以解决与这些提议的问题相关的一些开放问题。预计这些技术将得到进一步开发和加强,以成功地攻击该项目中提出的问题。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singular Abreu Equations and Minimizers of Convex Functionals with a Convexity Constraint
奇异 Abreu 方程和具有凸性约束的凸泛函极小化器
On approximating minimizers of convex functionals with a convexity constraint by singular Abreu equations without uniform convexity
用无均匀凸性的奇异 Abreu 方程逼近带凸性约束的凸泛函极小值
On singular Abreu equations in higher dimensions
高维奇异 Abreu 方程
Polynomial decay in $W^{2,\varepsilon}$ estimates for viscosity supersolutions of fully nonlinear elliptic equations
全非线性椭圆方程粘度超解的 $W^{2,varepsilon}$ 多项式衰减估计
Global Hölder estimates for 2D linearized Monge–Ampère equations with right-hand side in divergence form
右侧为散度形式的二维线性蒙日安培方程的全局 Hölder 估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nam Le其他文献

Engineering the work function and interlayer spacing of MXene via the intercalation process for efficient photoelectrochemical water splitting of CuWO<sub>4</sub>
  • DOI:
    10.1016/j.ijhydene.2024.10.076
  • 发表时间:
    2024-11-11
  • 期刊:
  • 影响因子:
  • 作者:
    Nam Le;Duc Viet Nguyen;Jin Suk Chung;Seung Hyun Hur
  • 通讯作者:
    Seung Hyun Hur
Literature Review on the Barriers to Online Learning during Covid-19 Pandemic
Covid-19大流行期间在线学习障碍的文献综述
  • DOI:
    10.4236/oalib.1109219
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nam Le
  • 通讯作者:
    Nam Le
Knowledge graph embedding by relational rotation and complex convolution for link prediction
  • DOI:
    10.1016/j.eswa.2022.119122
  • 发表时间:
    2022-11-03
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Thanh Le;Nam Le;Bac Le
  • 通讯作者:
    Bac Le
EUMSSI Team at the MediaEval Person Discovery Challenge 2016
EUMSSI 团队参加 2016 年 MediaEval 人物发现挑战赛
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nam Le;S. Meignier;J. Odobez
  • 通讯作者:
    J. Odobez
Complexity measures in Genetic Programming learning: A brief review
遗传编程学习中的复杂性测量:简要回顾

Nam Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nam Le', 18)}}的其他基金

Partial Differential Equations With and Without Convexity Constraints
有和没有凸性约束的偏微分方程
  • 批准号:
    2054686
  • 财政年份:
    2021
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Standard Grant
The Linearized Monge-Ampere Equation and Applications in Nonlinear, Geometric Partial Differential Equations
线性蒙日-安培方程及其在非线性几何偏微分方程中的应用
  • 批准号:
    1500400
  • 财政年份:
    2015
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于稀疏空时频表示的低轨导航多径信号参数估计
  • 批准号:
    62303482
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机缺失下纵向数据的多重稳健估计
  • 批准号:
    12361057
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于Cramér-Rao下限最优准则的DSInSAR参数优化选取与形变估计方法研究
  • 批准号:
    42304041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动态牵制策略下复杂网络的完全分布式弹性估计与同步控制
  • 批准号:
    62303434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
未知攻击环境下信息物理系统安全估计与智能防护研究
  • 批准号:
    62303212
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
  • 批准号:
    2239668
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Continuing Grant
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
  • 批准号:
    488763
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Operating Grants
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
  • 批准号:
    NE/X014134/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
    Research Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
  • 批准号:
    10797705
  • 财政年份:
    2023
  • 资助金额:
    $ 16.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了