The Linearized Monge-Ampere Equation and Applications in Nonlinear, Geometric Partial Differential Equations

线性蒙日-安培方程及其在非线性几何偏微分方程中的应用

基本信息

  • 批准号:
    1500400
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This research project focuses on fine properties of solutions to the linearized Monge-Ampere equation and their applications to nonlinear, geometric partial differential equations (PDEs) of great importance in geometric, mechanical, and economic contexts. The Monge-Ampere type equations arise naturally in optimal transportation problems in economics and in traffic network planning in cities, in the design of reflector antennae in geometric optics, and in the semi-geostrophic equations of meteorology. The project covers a broad class of PDEs where key structural quantities could be possibly extremely small (degenerate) or extremely large (singular). The main goal of the project aims at discovering new underlying principles and correct perspectives on these equations in order to develop innovative tools and methodologies to tackle them. Understanding deeper properties of affine maximal surface equations studied in this project will help design faster algorithms in architectural free-form structures, in computer graphics, and in visualization where convex objects are involved. In addition to applications, the successful analysis of PDEs investigated in this project will reveal deep and interesting connections between different areas of mathematics such as analysis, PDEs, the calculus of variations, geometry, and fluid mechanics, thereby augmenting the fruitful interaction among them.This project, in the field of analysis and partial differential equations (PDEs), focuses on regularity properties of solutions to the linearized Monge-Ampere (LMA) equation and their applications to nonlinear, geometric PDEs. The linearized Monge-Ampere equation arises in several fundamental problems of current interest in computer graphics, affine geometry, complex geometry, fluid mechanics, and economics. The purpose of this project is to obtain fine and higher order boundary regularity properties of the LMA equation and apply them to tackle several outstanding problems in analysis, geometry, and PDEs. More specifically, the objectives of the project are to: investigate sharp boundary regularity for the LMA equation; apply these regularity results to understand qualitative properties of several interesting but highly challenging nonlinear, fourth-order geometric equations such as the second boundary value problems for the affine maximal surface and Abreu's equations, and finally resolve the outstanding open problem on global smoothness of eigenfunctions to the Monge-Ampere operator. The techniques used in attacking the problems under study in this project include perturbation arguments, localization techniques, covering arguments, partial Legendre transform, geometry of the Monge-Ampere equation, and also harmonic analysis on homogeneous spaces.
本研究项目主要研究线性化的Monge-Ampere方程的解的精细性质及其在几何、力学和经济领域具有重要意义的非线性几何偏微分方程解的应用。Monge-Ampere型方程自然地出现在经济学中的最优交通问题和城市交通网络规划中,在几何光学中的反射面天线的设计中,在气象学的半地转方程中。该项目涵盖了一大类PDE,其中关键的结构量可能是极小的(简并的)或极大的(奇异的)。该项目的主要目标是发现关于这些方程式的新的基本原则和正确的观点,以便开发解决这些方程式的创新工具和方法。了解本课题中研究的仿射极大曲面方程的更深层次的性质,将有助于在建筑自由结构、计算机图形学和涉及凸对象的可视化中设计更快的算法。除了应用之外,本项目中研究的偏微分方程解的成功分析将揭示不同数学领域如分析、偏微分方程组、变分、几何和流体力学之间的深刻而有趣的联系,从而加强它们之间卓有成效的相互作用。本项目在分析和偏微分方程组(PDE)领域,专注于线性化Monge-Ampere(LMA)方程解的正则性及其在非线性、几何偏微分方程组中的应用。线性化的Monge-Ampere方程产生于当前计算机图形学、仿射几何、复杂几何、流体力学和经济学中的几个基本问题。这个项目的目的是得到LMA方程的精细和高阶边界正则性,并将它们应用于解决分析、几何和偏微分方程组中的几个突出问题。更具体地说,该项目的目标是:研究LMA方程的精确边界正则性;应用这些正则性结果来理解几个有趣但极具挑战性的四阶几何方程的定性性质,例如仿射极大曲面的第二边值问题和Abreu方程,并最终解决Monge-Ampere算子特征函数的全局光滑性的未决问题。本项目所研究的问题所使用的技术包括扰动变元、局部化技术、覆盖变元、部分勒让德变换、Monge-Ampere方程的几何以及齐次空间上的调和分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nam Le其他文献

Engineering the work function and interlayer spacing of MXene via the intercalation process for efficient photoelectrochemical water splitting of CuWO<sub>4</sub>
  • DOI:
    10.1016/j.ijhydene.2024.10.076
  • 发表时间:
    2024-11-11
  • 期刊:
  • 影响因子:
  • 作者:
    Nam Le;Duc Viet Nguyen;Jin Suk Chung;Seung Hyun Hur
  • 通讯作者:
    Seung Hyun Hur
Knowledge graph embedding by relational rotation and complex convolution for link prediction
  • DOI:
    10.1016/j.eswa.2022.119122
  • 发表时间:
    2022-11-03
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Thanh Le;Nam Le;Bac Le
  • 通讯作者:
    Bac Le
EUMSSI Team at the MediaEval Person Discovery Challenge 2016
EUMSSI 团队参加 2016 年 MediaEval 人物发现挑战赛
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nam Le;S. Meignier;J. Odobez
  • 通讯作者:
    J. Odobez
Complexity measures in Genetic Programming learning: A brief review
遗传编程学习中的复杂性测量:简要回顾
Literature Review on the Barriers to Online Learning during Covid-19 Pandemic
Covid-19大流行期间在线学习障碍的文献综述
  • DOI:
    10.4236/oalib.1109219
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nam Le
  • 通讯作者:
    Nam Le

Nam Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nam Le', 18)}}的其他基金

Partial Differential Equations With and Without Convexity Constraints
有和没有凸性约束的偏微分方程
  • 批准号:
    2054686
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
  • 批准号:
    1764248
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

复Monge-Ampere型方程的正则性和几何不等式
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
复Monge-Ampere方程解的局部正则性和奇异点集的研究
  • 批准号:
    12001512
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Minkowski问题及其相关Monge-Ampere方程专题研讨班
  • 批准号:
    12026412
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
  • 批准号:
    11926317
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
抛物型Monge-Ampere方程的整体解的存在性与解的局部估计
  • 批准号:
    11901018
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
退化Monge-Ampere 方程边值问题解的正则性研究
  • 批准号:
    11871470
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
仿射技巧与Monge-Ampere型方程
  • 批准号:
    11871352
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
  • 批准号:
    11826014
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
Orlicz-Minkowski问题及相关的Monge-Ampere型方程
  • 批准号:
    11871432
  • 批准年份:
    2018
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
具非线性梯度项的Monge-Ampere方程的大解
  • 批准号:
    11571295
  • 批准年份:
    2015
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
  • 批准号:
    FT220100368
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    ARC Future Fellowships
Singularity and regularity for Monge-Ampere type equations
Monge-Ampere 型方程的奇异性和正则性
  • 批准号:
    DP230100499
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
A generalization of the Monge-Ampere equation to almost complex geometry and its new potential applications
蒙日-安培方程对几乎复杂几何的推广及其新的潜在应用
  • 批准号:
    21K13798
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
  • 批准号:
    DP200101084
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
  • 批准号:
    1914719
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
  • 批准号:
    1845033
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
  • 批准号:
    1906370
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
  • 批准号:
    1764248
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了