CSEDI Collaborative Research: Understanding the nature of water transport between the transition zone and the lower mantle through the interdisciplinary studies

CSEDI合作研究:通过跨学科研究了解过渡带与下地幔之间的水运移本质

基本信息

  • 批准号:
    1764271
  • 负责人:
  • 金额:
    $ 42.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Earth is the water planet, with much of its H2O chemically bound within its rocky interior. The goal of this project is to provide new insight into the way in which water circulates, carried by the slow heat convection of Earth's silicate mantle. Geophysicists now have strong evidence that there is a substantial amount of water in Earth's interior, perhaps more than the current mass of the oceans. There is strong evidence that most of this water resides within the mantle transition zone (MTZ), between 410 km and 660 km depth in the Earth. The MTZ spans the stability range of minerals that can incorporate water within their crystal structures, up to a mass-fraction of a percent or more. It appears that the transition zone acts as a refillable reservoir of mineral-bound water within Earth's interior. The water in Earth's surface oceans can exchange with the water in the mantle transition zone via mantle convection, on time scales of 10-30 million years. How does the transition zone maintain its elevated water content as mantle rock flows upward and downward through it, converting to water-phobic minerals at its boundaries, particularly at its lower boundary at ~660-km depth? The goal of this project is to study the MTZ and lower-mantle minerals at high pressure in the lab and with computer simulations to determine how the water behaves near 660-km depth, and to detect water expulsion from descending rock masses using scattered seismic waves. The award will provide graduate and undergraduate training, including summer research projects, for several students in a broadly interdisciplinary research project.Understanding the nature of large-scale water transport in Earth's deep interior is one of the key issues in the study of evolution of Earth (and other planets). Since diffusion is inefficient, the most important process to control the large-scale transport of water is melting and subsequent melt-solid separation. The goal of this study is to improve our understanding on these two issues. Melting likely occurs when water-rich materials in the transition zone are brought into upper or the lower mantle where the water solubility in minerals is low. However, when metallic iron is present, then a majority of water partitions into it. Hence metallic iron has a controlling effect on the melting behavior. One aspect of this research is to obtain a better understanding of metallic iron content in the lower mantle. When melt is formed, most of water (hydrogen) goes to the melt. Melt migrates up or down depending on its density relative to the unmelted residual rock. Melt density under deep-mantle conditions has not been constrained well, particularly considering the range of likely chemical compositions. This project will investigate melt density under deep-mantle conditions with different redox values and plausible variations in the iron-magnesium ratio. Combining these, the investigators will have an improved view of deep-Earth water circulation. With scattered seismic waves, primarily using the receiver-function technique, the team will map out locations beneath the mantle transition zone where water-enhanced partial melt is present.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球是一颗水行星,其大部分H2O化学键合在其岩石内部。该项目的目标是提供新的见解,以水循环的方式,由地球的硅酸盐地幔缓慢的热对流进行。地球物理学家现在有强有力的证据表明,地球内部有大量的水,也许比目前的海洋质量还要多。有强有力的证据表明,这些水大部分存在于地幔过渡带(MTZ),在地球410公里和660公里之间的深度。MTZ跨越了矿物的稳定范围,这些矿物可以在其晶体结构中结合水,高达百分之一或更高的质量分数。 过渡带似乎是地球内部矿物结合水的可再填充水库。地球表面海洋中的水可以通过地幔对流与地幔过渡带中的水交换,时间尺度为1000万至3000万年。当地幔岩向上和向下流过过渡带时,过渡带如何保持其高含水量,在其边界,特别是在约660公里深度的下边界转化为憎水矿物? 该项目的目标是在实验室高压下研究MTZ和下地幔矿物,并通过计算机模拟确定660公里深度附近的水行为,并使用散射地震波检测下行岩体的排水情况。 该奖项将提供研究生和本科生的培训,包括夏季研究项目,为几个学生在一个广泛的跨学科研究项目。了解大规模的水在地球深处的内部传输的性质是在地球(和其他行星)的演化研究的关键问题之一。由于扩散是无效的,控制水的大规模运输的最重要的过程是熔化和随后的熔体-固体分离。本研究的目的是提高我们对这两个问题的认识。熔融可能发生在过渡带富水物质被带入矿物水溶性较低的上地幔或下地幔时。然而,当金属铁存在时,则大部分水分配到其中。因此,金属铁对熔化行为具有控制作用。这项研究的一个方面是更好地了解下地幔中的金属铁含量。当熔体形成时,大部分水(氢)进入熔体。熔体向上或向下迁移取决于其相对于未熔化的残余岩石的密度。深地幔条件下的熔体密度没有得到很好的限制,特别是考虑到可能的化学成分的范围。该项目将研究在不同氧化还原值和铁镁比合理变化的深地幔条件下的熔体密度。结合这些,研究人员将对深层地球水循环有更好的了解。 通过散射地震波,主要使用接收器功能技术,该团队将绘制出地幔过渡带下方存在水增强部分熔融的位置。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seismic Evidence of Mid‐Mantle Water Transport Beneath the Yellowstone Region
  • DOI:
    10.1029/2021gl095838
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    W. Frazer;Jeffrey Park
  • 通讯作者:
    W. Frazer;Jeffrey Park
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shun-ichiro Karato其他文献

Properties and dynamics of mantle and core
地幔和地核的性质和动力学
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernhard Steinberger;Eiji Ohta ni;Geld Steinle-Neumann;Jame s Connolly;Shun-ichiro Karato
  • 通讯作者:
    Shun-ichiro Karato
Correction to: strength of single-crystal orthopyroxene under lithospheric conditions
  • DOI:
    10.1007/s00410-018-1458-1
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Tomohiro Ohuchi;Shun-ichiro Karato;Kiyoshi Fujino
  • 通讯作者:
    Kiyoshi Fujino
High-resolution mapping of North America suggests numerous low-velocity zones above and below the mantle transition zone
对北美洲的高分辨率测绘显示,在地幔过渡带上下存在众多低速带。
  • DOI:
    10.1016/j.tecto.2025.230775
  • 发表时间:
    2025-06-27
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Steve A.B. Carr;Tolulope Olugboji;Jeffrey Park;Shun-ichiro Karato
  • 通讯作者:
    Shun-ichiro Karato
Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: Implications for rheology and geodynamics
  • DOI:
    https://doi.org/10.1016/j.epsl.2020.116642
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Han Guangjie;Li Juan;Guo Guangrui;Walter D. Mooney;Shun-ichiro Karato;David A. Yuen
  • 通讯作者:
    David A. Yuen
Deep mantle melting, global water circulation and its implications for the stability of the ocean mass
  • DOI:
    10.1186/s40645-020-00379-3
  • 发表时间:
    2020-12-10
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Shun-ichiro Karato;Bijaya Karki;Jeffrey Park
  • 通讯作者:
    Jeffrey Park

Shun-ichiro Karato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shun-ichiro Karato', 18)}}的其他基金

Collaborative Research: CSEDI: Understanding the Role of Hydrogen and Melting in the Water Transport Across the Transition Zone-Lower Mantle Boundary
合作研究:CSEDI:了解氢和熔化在跨过渡带-下地幔边界的水传输中的作用
  • 批准号:
    2001339
  • 财政年份:
    2020
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Origin of the mid-lithospheric discontinuity within a stable continent from a combined geophysics-mineral physics approach
合作研究:通过地球物理学-矿物物理学相结合的方法了解稳定大陆内岩石圈中部不连续性的起源
  • 批准号:
    1818792
  • 财政年份:
    2018
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
An experimental study on grain-size evolution during phase transformations in the mantle transition zone and its influence on rheological properties
地幔过渡带相变过程中晶粒尺寸演化及其对流变特性影响的实验研究
  • 批准号:
    1445356
  • 财政年份:
    2015
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
Experimental studies on plastic deformation of the lower mantle materials
下地幔材料塑性变形的实验研究
  • 批准号:
    1520006
  • 财政年份:
    2015
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding the nature of water and melt transport between the transition zone and the lower mantle combining mineral physics and seismology
CSEDI合作研究:结合矿物物理和地震学了解过渡带和下地幔之间水和熔体传输的性质
  • 批准号:
    1464003
  • 财政年份:
    2015
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
CSEDI合作研究:深地条件下塑性变形实验研究的巨大挑战
  • 批准号:
    1361327
  • 财政年份:
    2014
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
CSEDI: Understanding the structure of the continental upper mantle through the use of magnetotelluric and seismic observations
CSEDI:通过使用大地电磁和地震观测了解大陆上地幔的结构
  • 批准号:
    1160932
  • 财政年份:
    2012
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
An Experimental Study on the Strength of the Lithosphere: Large-strain shear deformation experiments of olivine + orthopyroxene aggregates
岩石圈强度的实验研究:橄榄石斜方辉石聚集体大应变剪切变形实验
  • 批准号:
    1214861
  • 财政年份:
    2012
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
Experimental studies on rheological properties of transition zone minerals
过渡带矿物流变特性的实验研究
  • 批准号:
    1015336
  • 财政年份:
    2011
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战
  • 批准号:
    0968858
  • 财政年份:
    2010
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102571
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102777
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054912
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054876
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054993
  • 财政年份:
    2021
  • 资助金额:
    $ 42.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了