Collaborative Research: CSEDI: Understanding the Role of Hydrogen and Melting in the Water Transport Across the Transition Zone-Lower Mantle Boundary

合作研究:CSEDI:了解氢和熔化在跨过渡带-下地幔边界的水传输中的作用

基本信息

  • 批准号:
    2001339
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The aim of this project is to conduct new experimental and theoretical studies on the properties of mineral in the deep interior of Earth that will help us to understand the nature of global water circulation in Earth’s mantle. Not only on the surface, water (hydrogen) is present inside of Earth and slowly circulates. This global water circulation creates and maintains oceans on Earth. Based on a number of studies during the last a few decades, there is a clear idea about the water circulation in the shallow part of Earth’s interior. However, the nature of water circulation in the largest part of the mantle, the lower mantle, remains poorly constrained. A key in the global water circulation is the role of melting. Melting removes water from minerals to melt, and melt migrates a long distance to cause large-scale water transport. However, the nature of global water circulation in the deep mantle is very poorly understood mainly because our understanding of water in the minerals in the deep mantle is limited. The PI team will bring together a suite of theoretical and experimental methods to address these questions, and will train both graduate and undergraduate students at three institutions on a cross-cutting research project. The PIs will also engage in public outreach events.In this new project, the water solubility in bridgmanite (dominant lower mantle mineral) will be determined under the shallow lower mantle conditions from ~660 km to ~1000 km depth, and also the role of water (hydrogen) on electrical conductivity in bridgmanite will be investigated. Experimental studies will be made on clean single crystals of bridgmanite and the hydrogen content and solubility mechanisms will be studied using FTIR and SIMS. Electrical conductivity will be measured on these samples for different orientations using the AC impedance spectroscopy. First-principle computational studies will also be made on hydrogen solubility and mobility in bridgmanite to help interpreting the experimental results. These results will help us to develop a model of global water circulation and to test models against geophysical estimates of water distribution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是对地球深部矿物的性质进行新的实验和理论研究,这将有助于我们了解地球地幔中全球水循环的性质。水(氢)不仅存在于地球表面,也存在于地球内部,并缓慢循环。这种全球性的水循环创造并维持着地球上的海洋。基于过去几十年的大量研究,人们对地球内部浅层的水循环有了一个清晰的认识。然而,水循环的性质在地幔的最大部分,下地幔,仍然缺乏约束。全球水循环的一个关键是融化的作用。融化将水从矿物中移走以融化,并且融化物迁移很长的距离以引起大规模的水输送。然而,全球深部地幔水循环的性质知之甚少,主要是因为我们对深部地幔矿物中的水的了解有限。 PI团队将汇集一套理论和实验方法来解决这些问题,并将在三个机构对研究生和本科生进行跨学科研究项目的培训。 在这一新项目中,将在深度约660 km至约1000 km的浅下地幔条件下测定硼镁石(下地幔主要矿物)的水溶性,并研究水(氢)对硼镁石电导率的作用。对洁净的硼镁石单晶进行了实验研究,并利用FTIR和西姆斯对氢含量和溶解机理进行了研究。将使用交流阻抗谱测量这些样品在不同方向上的电导率。第一性原理计算研究也将对氢的溶解度和流动性的硼镁石,以帮助解释实验结果。这些结果将帮助我们开发全球水循环模型,并根据地球物理学估计的水分布来测试模型。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Melting of Bridgmanite Under Hydrous Shallow Lower Mantle Conditions
Elasticity of Hydrated Al‐Bearing Stishovite and Post‐Stishovite: Implications for Understanding Regional Seismic VS Anomalies Along Subducting Slabs in the Lower Mantle
  • DOI:
    10.1029/2021jb023170
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanyao Zhang;S. Fu;S. Karato;T. Okuchi;S. Chariton;V. Prakapenka;Jung‐Fu Lin
  • 通讯作者:
    Yanyao Zhang;S. Fu;S. Karato;T. Okuchi;S. Chariton;V. Prakapenka;Jung‐Fu Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shun-ichiro Karato其他文献

Properties and dynamics of mantle and core
地幔和地核的性质和动力学
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernhard Steinberger;Eiji Ohta ni;Geld Steinle-Neumann;Jame s Connolly;Shun-ichiro Karato
  • 通讯作者:
    Shun-ichiro Karato
High-resolution mapping of North America suggests numerous low-velocity zones above and below the mantle transition zone
对北美洲的高分辨率测绘显示,在地幔过渡带上下存在众多低速带。
  • DOI:
    10.1016/j.tecto.2025.230775
  • 发表时间:
    2025-06-27
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Steve A.B. Carr;Tolulope Olugboji;Jeffrey Park;Shun-ichiro Karato
  • 通讯作者:
    Shun-ichiro Karato
Correction to: strength of single-crystal orthopyroxene under lithospheric conditions
  • DOI:
    10.1007/s00410-018-1458-1
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Tomohiro Ohuchi;Shun-ichiro Karato;Kiyoshi Fujino
  • 通讯作者:
    Kiyoshi Fujino
Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: Implications for rheology and geodynamics
  • DOI:
    https://doi.org/10.1016/j.epsl.2020.116642
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Han Guangjie;Li Juan;Guo Guangrui;Walter D. Mooney;Shun-ichiro Karato;David A. Yuen
  • 通讯作者:
    David A. Yuen
Deep mantle melting, global water circulation and its implications for the stability of the ocean mass
  • DOI:
    10.1186/s40645-020-00379-3
  • 发表时间:
    2020-12-10
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Shun-ichiro Karato;Bijaya Karki;Jeffrey Park
  • 通讯作者:
    Jeffrey Park

Shun-ichiro Karato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shun-ichiro Karato', 18)}}的其他基金

Collaborative Research: Understanding the Origin of the mid-lithospheric discontinuity within a stable continent from a combined geophysics-mineral physics approach
合作研究:通过地球物理学-矿物物理学相结合的方法了解稳定大陆内岩石圈中部不连续性的起源
  • 批准号:
    1818792
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding the nature of water transport between the transition zone and the lower mantle through the interdisciplinary studies
CSEDI合作研究:通过跨学科研究了解过渡带与下地幔之间的水运移本质
  • 批准号:
    1764271
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
An experimental study on grain-size evolution during phase transformations in the mantle transition zone and its influence on rheological properties
地幔过渡带相变过程中晶粒尺寸演化及其对流变特性影响的实验研究
  • 批准号:
    1445356
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Experimental studies on plastic deformation of the lower mantle materials
下地幔材料塑性变形的实验研究
  • 批准号:
    1520006
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding the nature of water and melt transport between the transition zone and the lower mantle combining mineral physics and seismology
CSEDI合作研究:结合矿物物理和地震学了解过渡带和下地幔之间水和熔体传输的性质
  • 批准号:
    1464003
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
CSEDI合作研究:深地条件下塑性变形实验研究的巨大挑战
  • 批准号:
    1361327
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CSEDI: Understanding the structure of the continental upper mantle through the use of magnetotelluric and seismic observations
CSEDI:通过使用大地电磁和地震观测了解大陆上地幔的结构
  • 批准号:
    1160932
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
An Experimental Study on the Strength of the Lithosphere: Large-strain shear deformation experiments of olivine + orthopyroxene aggregates
岩石圈强度的实验研究:橄榄石斜方辉石聚集体大应变剪切变形实验
  • 批准号:
    1214861
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Experimental studies on rheological properties of transition zone minerals
过渡带矿物流变特性的实验研究
  • 批准号:
    1015336
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战
  • 批准号:
    0968858
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102571
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102777
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054912
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054876
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054993
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了