Large Cardinals, Small Sets and Absoluteness

大基数、小集合和绝对性

基本信息

  • 批准号:
    1764320
  • 负责人:
  • 金额:
    $ 15.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Techniques from mathematical logic can be used to measure the complexity of mathematical concepts. Areas of mathematics with physical applications tend to appear in the low levels of the corresponding complexity hierarchy. Passing to higher levels of complexity enables mathematicians to make connections between different areas of mathematics, and to develop productive general theories. There is a corresponding division of the universe of mathematics into an absolute part, where natural questions tend to be resolved by the standard axioms, and a more abstract part where extensions of the standard axiom system are needed to resolve many fundamental questions. The main focus of Larson's research is the relationship between these parts. The technical machinery involved in this project includes Cohen's forcing technique, axioms asserting the existence of winning strategies in infinite games, and axioms asserting the existence of infinite objects whose existence cannot be proved from the standard axioms for mathematics. These techniques originate in set theory, which serves as the most commonly accepted foundations for mathematics. Larson's work applies them to other areas, including model theory, topology and analysis. Larson hopes to make progress with this approach on several longstanding well-known open problems.One aspect of Larson's work concerns forcing over models of determinacy to produce canonical models. Woodin's Pmax forcing, when applied to a model of determinacy, produces a model which is maximal for subsets of the set of countable ordinals. One project, initiated by Woodin, and continued by Larson in collaboration with other researchers, is the extent to which this maximality can be made to hold for larger cardinals. Another product, largely in collaboration with Jindrich Zapletal, converts a number of classical ZFC constructions into partial orders, which when applied to determinacy models produce models of fragments of the Axiom of Choice. This approach has resolved a number of classical questions about the relationship between forms of the Axiom of Choice, but may also be able to shine light on newer problems in the theory of Borel equivalence relations. Other aspects of the project include a new approach to Vaught's Conjecture, one of the oldest problems in model theory, and the study of the notion of universally measurability, a fundamental concept from analysis which is still not well understood. Finally, Larson is working on a book on unpublished work of W.H. Woodin, on extensions of the Axiom of Determinacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学逻辑的技术可以用来衡量数学概念的复杂性。具有物理应用的数学领域往往出现在相应复杂性层次的较低层次上。进入更高层次的复杂性使数学家能够在数学的不同领域之间建立联系,并发展出富有成效的一般理论。相应地,数学的世界被划分为绝对的部分,其中自然的问题倾向于用标准公理来解决,而更抽象的部分则需要扩展标准公理系统来解决许多基本问题。拉尔森研究的主要焦点是这些部分之间的关系。这个项目中涉及的技术机制包括科恩的强迫技术,在无限游戏中断言获胜策略存在的公理,以及断言无限对象存在的公理,这些对象的存在不能从标准数学公理中证明。这些技术起源于集合论,它是最普遍接受的数学基础。Larson的工作将它们应用到其他领域,包括模型理论、拓扑和分析。Larson希望用这种方法在几个众所周知的长期开放问题上取得进展。拉尔森工作的一个方面是强迫确定性模型产生规范模型。Woodin的Pmax强迫,当应用于确定性模型时,产生了一个对可数序数集合子集最大的模型。一个由伍丁发起,并由拉尔森与其他研究人员合作继续进行的项目是,这种最大值可以在多大程度上容纳更大的枢机。另一个产品,主要是与Jindrich Zapletal合作,将一些经典的ZFC结构转换为偏序,当应用于确定性模型时,产生选择公理片段的模型。这种方法已经解决了许多关于选择公理形式之间关系的经典问题,但也可能能够照亮Borel等价关系理论中的新问题。该项目的其他方面包括对模型理论中最古老的问题之一沃特猜想的新方法,以及对普遍可测量性概念的研究,这是一个来自分析的基本概念,但仍未得到很好的理解。最后,拉尔森正在写一本关于W.H.伍丁未出版作品的书,关于确定性公理的扩展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Choosing between incompatible ideals
在不相容的理想之间进行选择
  • DOI:
    10.1016/j.ejc.2021.103349
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Brian, Will;Larson, Paul B.
  • 通讯作者:
    Larson, Paul B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Larson其他文献

Global Query Processing and Optimization in the CORDS Multidatabase System
CORDS 多数据库系统中的全局查询处理和优化
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Larson;Qiang Zhu
  • 通讯作者:
    Qiang Zhu
Taurus Database: How to be Fast, Available, and Frugal in the Cloud
Taurus 数据库:如何在云中快速、可用且节俭
CASA: Classification-based Adjusted Slot Admission Control for Query Processing Engines
CASA:查询处理引擎的基于分类的调整槽准入控制
Polar forcings and measured extensions
  • DOI:
    10.1016/j.topol.2022.108290
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Larson;Jindřich Zapletal
  • 通讯作者:
    Jindřich Zapletal
Statistical estimation of thevolatility for a stochastic differential equation
随机微分方程波动率的统计估计
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jorg Brendle;Paul Larson;D. Blazquez-Sanz and K. Yagasaki;内田雅之
  • 通讯作者:
    内田雅之

Paul Larson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Larson', 18)}}的其他基金

Collaborative Research: DigIn - Documenting marine biodiversity through Digitization of Invertebrate collections
合作研究:DigIn - 通过无脊椎动物收藏的数字化记录海洋生物多样性
  • 批准号:
    2001249
  • 财政年份:
    2020
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Travel Support for a Thematic Program in Strong Logics
强逻辑主题节目的差旅支持
  • 批准号:
    1607793
  • 财政年份:
    2016
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Conference on the work of W. Hugh Woodin
W. Hugh Woodin 工作会议
  • 批准号:
    1516781
  • 财政年份:
    2015
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Large cardinals and small sets
大红衣主教和小红衣主教
  • 批准号:
    1201494
  • 财政年份:
    2012
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
EAPSI: Evolution and Ecology of Brooding Anemones
EAPSI:育雏海葵的进化和生态学
  • 批准号:
    1015216
  • 财政年份:
    2010
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Fellowship Award
Absoluteness and Choice
绝对性与选择
  • 批准号:
    0801009
  • 财政年份:
    2008
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Maximal Methods for Small Sets
小集的极大方法
  • 批准号:
    0401603
  • 财政年份:
    2004
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
NSF NATO POSTDOCTORAL FELLOWSHIOS
NSF 北约博士后研究员
  • 批准号:
    9804632
  • 财政年份:
    1998
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Fellowship Award
Upgrade of Existing GIS Technology
现有GIS技术升级
  • 批准号:
    9651376
  • 财政年份:
    1996
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant

相似海外基金

Forcing, inner models, and large cardinals.
强迫、内部模型和大基数。
  • 批准号:
    2246905
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Continuing Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    2308248
  • 财政年份:
    2023
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Continuing Grant
Forcing, Large Cardinals, and Infinitary Combinatorics
强迫、大基数和无限组合
  • 批准号:
    2054532
  • 财政年份:
    2021
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    1954117
  • 财政年份:
    2020
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Continuing Grant
The singular cardinals problem
奇异基数问题
  • 批准号:
    2440142
  • 财政年份:
    2020
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Studentship
Large cardinals, determinacy, and the analysis of the Chang+ model
大基数、确定性以及 Chang 模型的分析
  • 批准号:
    19K03604
  • 财政年份:
    2019
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Descriptive Inner Model Theory, Large Cardinals, and Combinatorics
描述性内模型理论、大基数和组合学
  • 批准号:
    1849295
  • 财政年份:
    2018
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Forcing with Large Cardinals
强迫大红雀
  • 批准号:
    1800613
  • 财政年份:
    2018
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Standard Grant
Forcing and Large Cardinals
强迫和大红衣主教
  • 批准号:
    1764029
  • 财政年份:
    2018
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Continuing Grant
Applications of Large Cardinals to Constructive Set Theory
大基数在构造性集合论中的应用
  • 批准号:
    1972728
  • 财政年份:
    2017
  • 资助金额:
    $ 15.21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了