D3SC: Machine Learned Free Energies of Compounds

D3SC:机器学习的化合物自由能

基本信息

  • 批准号:
    1800592
  • 负责人:
  • 金额:
    $ 51.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Charles Musgrave of the University of Colorado Boulder and collaborator Aaron Holder are supported by the Division of Chemistry, and the Division of Chemical, Bioengineering, Environmental, and Transport Systems, to develop and apply machine learning approaches for the discovery of new materials. While the periodic table provides a many possible combinations of elements from which to form materials, only a fraction of these compounds will be stable or have desirable properties for particular applications. Furthermore, of the large number of possible compounds, only about one thousand have known properties at elevated temperatures. For the past fifty years, computational chemists have used equations of quantum mechanics to discover new materials. However, screening large numbers of candidate materials for a specific technological application remains too computationally demanding to be practical. Recently, statistical learning approaches have been developed which can extract systematic information from large quantities of data to train highly reliable "artificial intelligence" models for predicting properties of a new system. In this project, Professors Musgrave and Holder are using machine learning approaches applied to predict the stabilities, structures, and chemical reactivity of materials. The predicted properties can then be used to identify candidate materials for catalyzing technologically-important reactions, such as splitting water into oxygen and hydrogen, converting carbon dioxide into useful products, or the 'green' synthesis of ammonia from nitrogen and water. The models are available on public repositories as machine learning computer codes, and through publicly-accessible databases. The project is training high school, undergraduate and graduate students in the development and application of state-of-the-art machine learning methods for chemistry and chemical engineering applications. The researchers participation in the Broadening Opportunity through the Leadership and Diversity (BOLD) Center at University of Colorado. The incorporation of new concepts in machine learning and chemistry are integrated into courses and through the departmental LearnChemE YouTube platform.This project combines expertise in electronic structure, thermodynamics, computational science, and machine learning to study one of the most fundamental properties of molecules--the Gibbs free energy, G(T). The data-driven approach takes advantage of results showing that the vibrational entropy and Helmholtz free energy computed in the constant-volume quasiharmonic approximation - quantities that critically contribute to G(T) but are computationally challenging to calculate quantum-mechanically - have systematic temperature dependence and can be accurately and efficiently predicted using machine learning, coupled with knowledge of the chemical composition of the material. The researchers are extending this observation to apply machine learning methods to model G(T) directly, using experimental data for several hundred molecules for training and descriptor extraction. The resulting descriptors are being used to predict thermochemical data for ~20,000 unique compositions tabulated in the Inorganic Crystal Structure Database, and in turn, to compute temperature-dependent convex hull phase diagrams and solid-state reaction equilibria. The models and G(T) data are available on large databases. The new methodology is enabling the discovery of general trends and new chemical knowledge of the effects of temperature and composition on reactivity, synthesizability, stability and metastability. In addition to providing deep insights into the thermochemistry of molecules and reactions, this research is enabling the identification of anomalies that may indicate systems where emerging properties are altering the behavior of the molecule. For example, where temperature-dependent emergent or quantum phenomena create unique materials properties. Despite the technological and economic importance of advanced materials in a broad range of technologies, much is still unknown about the detailed behavior that give rise to their stability and reactivity. Potential applications of the new techniques and thermochemical databases produced include thermochemical water splitting using redox materials, ammonia synthesis by chemical looping, oxidation chemistries, carbothermal reduction of oxides, and reduction of molecules by molecular hydrogen or other reductants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科罗拉多大学博尔德分校的Charles Musgrave和合作者Aaron保持器得到化学系和化学、生物工程、环境和运输系统系的支持,开发和应用机器学习方法来发现新材料。虽然周期表提供了许多可能的元素组合,从这些组合中形成材料,但这些化合物中只有一小部分是稳定的或具有特定应用所需的特性。此外,在大量可能的化合物中,只有大约一千种在高温下具有已知的性质。在过去的50年里,计算化学家已经使用量子力学方程来发现新材料。 然而,为特定的技术应用筛选大量的候选材料仍然对计算要求太高,以至于不实用。 最近,已经开发了统计学习方法,其可以从大量数据中提取系统信息,以训练高度可靠的“人工智能”模型,用于预测新系统的属性。 在这个项目中,Musgrave教授和保持器教授正在使用机器学习方法来预测材料的稳定性,结构和化学反应性。然后,预测的性质可以用于识别催化技术上重要的反应的候选材料,例如将水分解为氧气和氢气,将二氧化碳转化为有用的产品,或从氮气和水合成氨的“绿色”合成。 这些模型可以作为机器学习计算机代码在公共存储库中获得,并通过公共访问数据库获得。 该项目正在培训高中生、本科生和研究生开发和应用最先进的机器学习方法,用于化学和化学工程应用。 研究人员参加了科罗拉多大学的领导力和多样性中心的扩大机会。 将机器学习和化学中的新概念融入课程中,并通过部门LearnChemE YouTube平台。该项目结合了电子结构,热力学,计算科学和机器学习的专业知识,研究分子最基本的性质之一-吉布斯自由能,G(T)。数据驱动的方法利用了结果,这些结果表明,在恒定体积准谐波近似下计算的振动熵和亥姆霍兹自由能-对G(T)有重要贡献但计算量子力学具有挑战性的量-具有系统的温度依赖性,并且可以使用机器学习准确有效地预测,再加上材料化学成分的知识。 研究人员正在扩展这一观察,将机器学习方法直接应用于G(T)模型,使用数百个分子的实验数据进行训练和描述符提取。 由此产生的描述符被用来预测在无机晶体结构数据库中列出的~ 20,000个独特组合物的热化学数据,并反过来计算温度依赖的凸船体相图和固态反应平衡。 模型和G(T)数据可在大型数据库中找到。新方法能够发现温度和组成对反应性、合成性、稳定性和亚稳性的影响的一般趋势和新的化学知识。除了对分子和反应的热化学提供深入的见解外,这项研究还能够识别异常,这些异常可能表明系统中出现的特性正在改变分子的行为。例如,温度相关的涌现或量子现象创造了独特的材料特性。尽管先进材料在广泛的技术中具有技术和经济重要性,但对于引起其稳定性和反应性的详细行为仍有很多未知之处。所产生的新技术和热化学数据库的潜在应用包括使用氧化还原材料的热化学水裂解、通过化学循环的氨合成、氧化化学、氧化物的碳热还原、该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Throughput Equilibrium Analysis of Active Materials for Solar Thermochemical Ammonia Synthesis
  • DOI:
    10.1021/acsami.9b01242
  • 发表时间:
    2019-07-17
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Bartel, Christopher J.;Rumptz, John R.;Musgrave, Charles B.
  • 通讯作者:
    Musgrave, Charles B.
The role of decomposition reactions in assessing first-principles predictions of solid stability
  • DOI:
    10.1038/s41524-018-0143-2
  • 发表时间:
    2019-01-04
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Bartel, Christopher J.;Weimer, Alan W.;Holder, Aaron M.
  • 通讯作者:
    Holder, Aaron M.
Bond-Valence Parameterization for the Accurate Description of DFT Energetics
用于准确描述 DFT 能量学的键价参数化
  • DOI:
    10.1021/acs.jctc.1c01113
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Morelock, Ryan J.;Bare, Zachary J.;Musgrave, Charles B.
  • 通讯作者:
    Musgrave, Charles B.
A Synergistic Approach to Unraveling the Thermodynamic Stability of Binary and Ternary Chevrel Phase Sulfides
  • DOI:
    10.1021/acs.chemmater.0c02648
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. Lilova;J. Perryman;Nicholas R. Singstock;M. Abramchuk;T. Subramani;Andy Lam;Ray M. S. Yoo;Jessica C. Ortiz-Rodríguez;C. Musgrave;A. Navrotsky;J. Velázquez
  • 通讯作者:
    K. Lilova;J. Perryman;Nicholas R. Singstock;M. Abramchuk;T. Subramani;Andy Lam;Ray M. S. Yoo;Jessica C. Ortiz-Rodríguez;C. Musgrave;A. Navrotsky;J. Velázquez
Inorganic Halide Double Perovskites with Optoelectronic Properties Modulated by Sublattice Mixing
  • DOI:
    10.1021/jacs.9b12440
  • 发表时间:
    2020-03-18
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Bartel, Christopher J.;Clary, Jacob M.;Musgrave, Charles B.
  • 通讯作者:
    Musgrave, Charles B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Musgrave其他文献

HydroGEN Seedling: Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production
HydroGEN 幼苗:用于先进太阳能热化学制氢的高性能材料的计算加速发现和实验演示
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charles Musgrave;Alan Weimer;Aaron Holder;Zachary J. L. Bare;Christopher Bartel;Samantha Millican;Ryan J. Morelock;Ryan Trottier;Katie Randolph
  • 通讯作者:
    Katie Randolph

Charles Musgrave的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Musgrave', 18)}}的其他基金

Computationally Accelerated Discovery of Catalysts for Electrification of the Nitrogen Cycle
计算加速发现氮循环电气化催化剂
  • 批准号:
    2400339
  • 财政年份:
    2024
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Combined Machine Learning and Computational Chemistry Guided Discovery of Chevrel Phases for Electrocatalytic CO2 Reduction
机器学习和计算化学相结合引导发现 Chevrel 相用于电催化 CO2 还原
  • 批准号:
    2016225
  • 财政年份:
    2020
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Automated Search for Materials for Ammonia Synthesis and Water Splitting
自动搜索氨合成和水分解材料
  • 批准号:
    1806079
  • 财政年份:
    2018
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
NSF/DOE Solar Hydrogen Fuel: Accelerated Discovery of Advanced RedOx Materials for Solar Thermal Water Splitting to Produce Renewable Hydrogen
NSF/DOE 太阳能氢燃料:加速发现用于太阳能热水分解生产可再生氢的先进氧化还原材料
  • 批准号:
    1433521
  • 财政年份:
    2014
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Singlet Fission for Highly Efficient Organic Photovoltaics
用于高效有机光伏的单线态裂变
  • 批准号:
    1214131
  • 财政年份:
    2012
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Non-Invasive Machine Learned Device to Personalize Arrhythmia Therapy
用于个性化心律失常治疗的非侵入性机器学习设备
  • 批准号:
    10468565
  • 财政年份:
    2022
  • 资助金额:
    $ 51.75万
  • 项目类别:
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
  • 批准号:
    2323108
  • 财政年份:
    2022
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
Development of machine-learned electron correlation method considering nonlocal correlation and relativistic effect
考虑非局域相关和相对论效应的机器学习电子相关方法的发展
  • 批准号:
    21K05002
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards the Development of Reactive Machine-Learned Potentials for Describing Chemistry in Solution
开发用于描述溶液中化学反应的机器学习潜力
  • 批准号:
    2638399
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Studentship
EAGER: Requirements Domain Specifications for Machine-Learned Software Components
EAGER:机器学习软件组件的需求领域规范
  • 批准号:
    2124606
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
  • 批准号:
    2046751
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
'Bind, Sealed, Delivered': machine-learned indicators of mucoadhesive binding in polymers for drug delivery
“结合、密封、递送”:用于药物递送的聚合物中粘膜粘附结合的机器学习指标
  • 批准号:
    566136-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Structure and symmetry in machine-learned molecular force fields
机器学习分子力场的结构和对称性
  • 批准号:
    2436342
  • 财政年份:
    2020
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Studentship
Machine Learned Potentials for In2O3
In2O3 的机器学习潜力
  • 批准号:
    2468419
  • 财政年份:
    2020
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Studentship
SBIR Phase II: A Therapeutic Machine-Learned Triage Application For Early Detection and Triage of COPD Exacerbations
SBIR 第二阶段:用于早期检测和分诊 COPD 恶化的机器学习分诊治疗应用
  • 批准号:
    1950994
  • 财政年份:
    2020
  • 资助金额:
    $ 51.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了