Measure Rigidity and Smooth Dynamics

测量刚性和平滑动态

基本信息

  • 批准号:
    1800646
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This project deals with a long-standing problem related to randomness. Consider a ball on a frictionless table. If the ball is set in motion, it will travel forever, making perfectly elastic collisions with the walls. If the table is a square or an equilateral triangle, there are only two possible behaviors: either the ball repeats the same periodic path forever, or it travels completely randomly in the entire polygon, eventually visiting every part of the table. This project is directed toward the basic mathematical problem of understanding the behavior of a ball when the table is a more general polygon. This is a basic problem arising in physics and statistical mechanics. The PI and his collaborators will also study other systems with similar behaviour. The project concerns the study of measure rigidity for actions of non-abelian groups, in the general context of smooth ergodic theory. Measure rigidity is traditionally studied in the context of homogeneous dynamics. Some spectacular results, such as Ratner's theorem and other advances in this direction are at the heart of the subject and its many applications. In recent work with M. Mirzakhani and in part with A. Mohammadi, the PI was able to prove dynamical rigidity results similar to Ratner's theorem in the context of Teichmueller dynamics, which is a non-homogeneous setting (and is not conjecturally conjugate to a homogenous action). In joint work with E. Lindenstrauss, these ideas were used in the homogeneous dynamics setting to prove an improved version of the celebrated Benoist-Quint theorem. In this project, the PI intends to go beyond Teichmueller and homogeneous dynamics and prove similar rigidity theorems in the much more general setting of smooth dynamics. It is expected that the results will be applied to some explicit examples, without the need for perturbation. This should have some applications outside the field, for examples, to geometry and number theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及一个长期存在的与随机性有关的问题。考虑一个球在无摩擦的桌子上。如果球开始运动,它将永远运动,与墙壁进行完全弹性碰撞。如果桌子是正方形或等边三角形,那么只有两种可能的行为:要么球永远重复相同的周期性路径,要么它在整个多边形中完全随机地移动,最终访问桌子的每一部分。这个项目是针对基本的数学问题的理解球的行为时,表是一个更一般的多边形。这是物理学和统计力学中的一个基本问题。PI和他的合作者还将研究具有类似行为的其他系统。该项目涉及的研究措施刚性的行动,非阿贝尔集团,在一般情况下,顺利遍历理论。测度刚性传统上是在齐次动力学的背景下研究的。一些引人注目的结果,如拉特纳定理和其他在这个方向上的进展是该主题及其许多应用的核心。在最近的工作与M。Mirzakhani和A. Mohammadi,PI能够证明动态刚性结果类似于Teichmueller动力学背景下的Ratner定理,这是一个非齐次设置(并且不与齐次作用共轭)。与E. Lindenstrauss,这些想法被用于齐次动力学设置,以证明著名的Benoist-Quint定理的改进版本。在这个项目中,PI打算超越Teichmueller和齐次动力学,并在更一般的光滑动力学设置中证明类似的刚性定理。预计结果将被应用到一些显式的例子,而不需要扰动。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective counting of simple closed geodesics on hyperbolic surfaces
双曲曲面上简单闭测地线的有效计数
Counting closed geodesics in strata
计算地层中的闭合测地线
  • DOI:
    10.1007/s00222-018-0832-y
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Eskin, Alex;Mirzakhani, Maryam;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Self-joinings for 3-IETs
3-IET 的自连接
Billiards, quadrilaterals, and moduli spaces
台球、四边形和模空间
Semisimplicity of the Lyapunov spectrum for irreducible cocycles
不可约余循环的李雅普诺夫谱的半简性
  • DOI:
    10.1007/s11856-019-1841-2
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Eskin, Alex;Matheus, Carlos
  • 通讯作者:
    Matheus, Carlos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Eskin其他文献

A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves
  • DOI:
    10.1007/s10711-015-0067-7
  • 发表时间:
    2015-04-05
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Alex Eskin;Carlos Matheus
  • 通讯作者:
    Carlos Matheus
Counting generalized Jenkins–Strebel differentials
  • DOI:
    10.1007/s10711-013-9877-7
  • 发表时间:
    2013-06-18
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Jayadev S. Athreya;Alex Eskin;Anton Zorich
  • 通讯作者:
    Anton Zorich
Invariant and stationary measures for the action on Moduli space
  • DOI:
    10.1007/s10240-018-0099-2
  • 发表时间:
    2018-04-17
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Alex Eskin;Maryam Mirzakhani
  • 通讯作者:
    Maryam Mirzakhani

Alex Eskin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Eskin', 18)}}的其他基金

Measure rigidity in Teichmuller space and beyond
测量 Teichmuller 空间及其他空间的刚度
  • 批准号:
    1500702
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
The SL(2,R) action on moduli space
模空间上的 SL(2,R) 作用
  • 批准号:
    1201422
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Coarse Differentiation and Teichmuller Dynamics
粗微分和 Teichmuller 动力学
  • 批准号:
    0905912
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Averaging Methods in Coarse Geometry
粗略几何中的平均方法
  • 批准号:
    0604251
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
FRG: Rational billards and geometry and dynamics on Teichmuller Space
FRG:Teichmuller 空间上的理性台球、几何和动力学
  • 批准号:
    0244542
  • 财政年份:
    2003
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Counting Problems and Semisimple Groups
计数问题和半简单群
  • 批准号:
    9704845
  • 财政年份:
    1997
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9306066
  • 财政年份:
    1993
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship Award

相似海外基金

Understanding how matrix rigidity and cytoskeletal crosstalk regulate vascular smooth muscle cell ageing
了解基质刚性和细胞骨架串扰如何调节血管平滑肌细胞衰老
  • 批准号:
    2868506
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Ricci flows for non-smooth spaces, monotonic quantities, and rigidity
适用于非光滑空间、单调量和刚性的 Ricci 流
  • 批准号:
    441873017
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Priority Programmes
Molecular mechanisms coupling matrix rigidity to DNA damage in smooth muscle
平滑肌中基质刚性与 DNA 损伤耦合的分子机制
  • 批准号:
    BB/T007699/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
CAREER: New Methods and Applications for Smooth Rigidity of Algebraic Actions
职业:代数动作的平滑刚性的新方法和应用
  • 批准号:
    1845416
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
New Methods for Smooth Rigidity of Algebraic Actions
代数动作平滑刚性的新方法
  • 批准号:
    1700837
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
  • 批准号:
    387658-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Postdoctoral Fellowships
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
  • 批准号:
    387658-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Postdoctoral Fellowships
Measure rigidity and smooth rigidity of abelian actions
测量阿贝尔动作的刚度和平滑刚度
  • 批准号:
    0701292
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Cohomology of Dynamical Systems, Rigidity of Smooth Group Actions, and Partially Hyperbolic Diffeomorphisms
动力系统的上同调、光滑群作用的刚性和部分双曲微分同胚
  • 批准号:
    0196530
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Equivalence of dynamical systems under smooth changes of variables and rigidity - Summer 2001
NSF/CBMS 数学科学区域会议 - 变量和刚度平滑变化下动力系统的等效性 - 2001 年夏季
  • 批准号:
    0086155
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了