Measure rigidity in Teichmuller space and beyond
测量 Teichmuller 空间及其他空间的刚度
基本信息
- 批准号:1500702
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project deals with a long-standing problem related to randomness. Consider a ball on a frictionless table. If the ball is set in motion, it will travel forever, making perfectly elastic collisions with the walls. If the table is a square or an equilateral triangle, there are only two possible behaviors: either the ball repeats the same periodic path forever, or it travels completely randomly in the entire polygon, eventually visiting every part of the table. This project is directed toward the basic mathematical problem of understanding the behavior of a ball when the table is a more general polygon. This is a basic problem arising in physics and statistical mechanics.The project concerns the interrelated analytic study of trajectories on rational polygonal tables, moduli spaces of abelian and quadratic differentials, and the dynamics of the action of the group of two-by-two matrices on these moduli spaces. In recent work with M. Mirzakhani and in part with A. Mohammadi the PI was able to prove some dynamical rigidity results for this action, which allow one to understand every (and not just almost every) orbit. This is important for several reasons. In particular, the surfaces which arise from table trajectories are a set of measure zero in the moduli space, and ergodic theorems which hold at every point are needed to prove results about the trajectories. Many of the results and techniques are based on a loose analogy with the theory of unipotent flows on locally symmetric spaces (e.g. Ratner's theorem). However, the moduli spaces of differentials are substantially different and new ideas were needed. We propose developing these ideas further, both in the context of dynamics on moduli space and also in the context of other group actions.
这个项目涉及一个长期存在的与随机性有关的问题。 考虑一个球在无摩擦的桌子上。如果球开始运动,它将永远运动,与墙壁进行完全弹性碰撞。如果桌子是正方形或等边三角形,那么只有两种可能的行为:要么球永远重复相同的周期性路径,要么它在整个多边形中完全随机地移动,最终访问桌子的每一部分。 这个项目是针对基本的数学问题的理解球的行为时,表是一个更一般的多边形。 这是物理学和统计力学中出现的一个基本问题。该项目涉及有理多边形表上的轨迹、阿贝尔和二次微分的模空间以及这些模空间上的二乘二矩阵群的作用动力学的相关分析研究。 在最近的工作与M。Mirzakhani和A. PI Mohammadi能够证明这种作用的一些动力学刚性结果,这使得人们能够理解每一个(而不仅仅是几乎每一个)轨道。这一点很重要,原因有几个。特别是,从表的轨迹所产生的表面是一组模空间中的零测量,遍历定理,在每一个点都需要证明结果的轨迹。 许多结果和技巧都是基于与局部对称空间上的单幂流理论(例如拉特纳定理)的松散类比。然而,微分的模空间有很大的不同,需要新的想法。我们建议进一步发展这些想法,无论是在模空间的动力学背景下,也在其他群体行动的背景下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Eskin其他文献
A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves
- DOI:
10.1007/s10711-015-0067-7 - 发表时间:
2015-04-05 - 期刊:
- 影响因子:0.500
- 作者:
Alex Eskin;Carlos Matheus - 通讯作者:
Carlos Matheus
Counting generalized Jenkins–Strebel differentials
- DOI:
10.1007/s10711-013-9877-7 - 发表时间:
2013-06-18 - 期刊:
- 影响因子:0.500
- 作者:
Jayadev S. Athreya;Alex Eskin;Anton Zorich - 通讯作者:
Anton Zorich
Invariant and stationary measures for the action on Moduli space
- DOI:
10.1007/s10240-018-0099-2 - 发表时间:
2018-04-17 - 期刊:
- 影响因子:3.500
- 作者:
Alex Eskin;Maryam Mirzakhani - 通讯作者:
Maryam Mirzakhani
Alex Eskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Eskin', 18)}}的其他基金
Measure Rigidity and Smooth Dynamics
测量刚性和平滑动态
- 批准号:
1800646 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
The SL(2,R) action on moduli space
模空间上的 SL(2,R) 作用
- 批准号:
1201422 - 财政年份:2012
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Coarse Differentiation and Teichmuller Dynamics
粗微分和 Teichmuller 动力学
- 批准号:
0905912 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Averaging Methods in Coarse Geometry
粗略几何中的平均方法
- 批准号:
0604251 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
FRG: Rational billards and geometry and dynamics on Teichmuller Space
FRG:Teichmuller 空间上的理性台球、几何和动力学
- 批准号:
0244542 - 财政年份:2003
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Counting Problems and Semisimple Groups
计数问题和半简单群
- 批准号:
9704845 - 财政年份:1997
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9306066 - 财政年份:1993
- 资助金额:
$ 37.5万 - 项目类别:
Fellowship Award
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
- 批准号:
10656057 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
- 批准号:
10681111 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Early Career Researcher Award
Characterizing and modulating motor cortical dynamics underlying rapid sequence learning in primates
表征和调节灵长类动物快速序列学习背后的运动皮层动力学
- 批准号:
10677450 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
- 批准号:
23K12969 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
- 批准号:
2315629 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant