Euler Systems, p-adic Deformations, and the Birch-Swinnerton-Dyer Conjecture

欧拉系统、p-adic 变形和 Birch-Swinnerton-Dyer 猜想

基本信息

  • 批准号:
    1801385
  • 负责人:
  • 金额:
    $ 13.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with research in number theory. A central focus in this area of mathematics is understanding the mechanism whereby local information can be packaged to get access to the global information of interest, such as the solutions to polynomial equations. Certain analytic objects, the so-called L-functions, are expected to encode such mechanism. The celebrated conjecture of Birch and Swinnerton-Dyer (one of the millenium prize problems) revolves around this theme, as does Dirichlet's class number formula from the nineteenth century. This project aims to enhance our understanding of the Birch and Swinnerton-Dyer conjecture and of closely related problems. Progress in these directions may have an impact on areas, such as cryptography, exploiting the complexity of the arithmetic of elliptic curves.Euler systems build a bridge between certain arithmetic objects and their analytic counterparts (L-functions), hence providing very powerful tools for tackling problems on the passage from local to global. The project aims to exploit the Euler systems for tensor products and triple products of modular forms, and especially their variation in p-adic families, to obtain new results on fundamental open problems in number theory, such as Greenberg's conjecture on the generic order of vanishing of L-functions in Hida families, the p-part of the Birch and Swinnerton-Dyer formula in ranks 0 and 1, and the construction of explicit classes in Selmer groups of elliptic curves of rank 2, curves that lie just beyond our current understanding of the Birch and Swinnerton-Dyer conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及数论研究。该数学领域的一个中心焦点是理解可以打包局部信息以获取感兴趣的全局信息(例如多项式方程的解)的机制。某些分析对象,即所谓的 L 函数,预计会编码这种机制。伯奇和斯温纳顿-戴尔的著名猜想(千禧奖问题之一)围绕着这个主题,十九世纪的狄利克雷的类数公式也是如此。该项目旨在增强我们对伯奇和斯温纳顿-戴尔猜想以及密切相关问题的理解。这些方向的进展可能会对密码学、利用椭圆曲线算术的复杂性等领域产生影响。欧拉系统在某些算术对象与其分析对象(L 函数)之间架起了一座桥梁,从而为解决从局部到全局的过程中的问题提供了非常强大的工具。该项目旨在利用张量积和模形式三重积的欧拉系统,特别是它们在 p 进数族中的变体,以获得数论中基本开放问题的新结果,例如格林伯格关于 Hida 族中 L 函数消失的泛阶的猜想、Birch 和 Swinnerton-Dyer 公式在 0 和 1 级中的 p 部分,以及 Selmer 群中显式类的构造 2 阶椭圆曲线,这些曲线超出了我们目前对 Birch 和 Swinnerton-Dyer 猜想的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Class groups and local indecomposability for non-CM forms
非 CM 形式的类组和局部不可分解性
On the p-adic variation of Heegner points
关于 Heegner 点的 p 进变分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesc Castella其他文献

On the $p$-part of the Birch-Swinnerton-Dyer formula for multiplicative primes
关于素数乘法 Birch-Swinnerton-Dyer 公式的 $p$ 部分
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesc Castella
  • 通讯作者:
    Francesc Castella
Derived $p$-adic heights and the leading coefficient of the Bertolini--Darmon--Prasanna $p$-adic $L$-function
导出 $p$-adic 高度和 Bertolini--Darmon--Prasanna $p$-adic $L$-函数的首项系数
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesc Castella;Chi;Debanjana Kundu;Yu;Zheng Liu
  • 通讯作者:
    Zheng Liu
Iwasawa Main Conjecture for Heegner Points: Supersingular Case
岩泽对海格纳点的主要猜想:超奇异情况
  • DOI:
    10.1112/s0010437x0500134x
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesc Castella;X. Wan
  • 通讯作者:
    X. Wan
THE DIAGONAL CYCLE EULER SYSTEM FOR
对角循环欧拉系统
Nonvanishing of generalised Kato classes and Iwasawa main conjectures
广义加藤类的不消失和岩泽主要猜想
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francesc Castella
  • 通讯作者:
    Francesc Castella

Francesc Castella的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesc Castella', 18)}}的其他基金

Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Continuing Grant
Elliptic Curves, p-adic Deformations, and Iwasawa Theory
椭圆曲线、p 进变形和岩泽理论
  • 批准号:
    2101458
  • 财政年份:
    2021
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Continuing Grant
Euler Systems, p-adic Deformations, and the Birch-Swinnerton-Dyer Conjecture
欧拉系统、p-adic 变形和 Birch-Swinnerton-Dyer 猜想
  • 批准号:
    1946136
  • 财政年份:
    2019
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    EU-Funded
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
  • 批准号:
    10079892
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Legacy Department of Trade & Industry
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
  • 批准号:
    FL220100059
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Australian Laureate Fellowships
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Projects
Linking Australia’s basement and cover mineral systems
连接澳大利亚的地下室和覆盖矿物系统
  • 批准号:
    DE240101283
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Discovery Early Career Researcher Award
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
  • 批准号:
    EP/Y032624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Fellowship
Managing the Activity of Pollinators in Protected Cropping Systems (MAPP-CS)
管理保护性耕作系统中授粉媒介的活动 (MAPP-CS)
  • 批准号:
    BB/Z514366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.81万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了