Euler Systems, p-adic Deformations, and the Birch-Swinnerton-Dyer Conjecture
欧拉系统、p-adic 变形和 Birch-Swinnerton-Dyer 猜想
基本信息
- 批准号:1946136
- 负责人:
- 金额:$ 8.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with research in number theory. A central focus in this area of mathematics is understanding the mechanism whereby local information can be packaged to get access to the global information of interest, such as the solutions to polynomial equations. Certain analytic objects, the so-called L-functions, are expected to encode such mechanism. The celebrated conjecture of Birch and Swinnerton-Dyer (one of the millenium prize problems) revolves around this theme, as does Dirichlet's class number formula from the nineteenth century. This project aims to enhance our understanding of the Birch and Swinnerton-Dyer conjecture and of closely related problems. Progress in these directions may have an impact on areas, such as cryptography, exploiting the complexity of the arithmetic of elliptic curves.Euler systems build a bridge between certain arithmetic objects and their analytic counterparts (L-functions), hence providing very powerful tools for tackling problems on the passage from local to global. The project aims to exploit the Euler systems for tensor products and triple products of modular forms, and especially their variation in p-adic families, to obtain new results on fundamental open problems in number theory, such as Greenberg's conjecture on the generic order of vanishing of L-functions in Hida families, the p-part of the Birch and Swinnerton-Dyer formula in ranks 0 and 1, and the construction of explicit classes in Selmer groups of elliptic curves of rank 2, curves that lie just beyond our current understanding of the Birch and Swinnerton-Dyer conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是关于数论的研究.在这个数学领域的一个中心焦点是理解的机制,使本地信息可以打包,以获得感兴趣的全球信息,如解决方案多项式方程。某些分析对象,所谓的L函数,被期望编码这样的机制。著名的猜想伯奇和斯温纳顿戴尔(一个千禧年奖的问题)围绕这个主题,因为没有狄利克雷的类数公式从19世纪。这个项目旨在提高我们对Birch和Swinnerton-Dyer猜想以及相关问题的理解。这些方向的进展可能会对一些领域产生影响,如密码学,利用椭圆曲线算术的复杂性。欧拉系统在某些算术对象和它们的解析对应对象(L-函数)之间建立了一座桥梁,因此为解决从局部到全局的问题提供了非常强大的工具。该项目旨在利用模形式的张量积和三重积的Euler系统,特别是它们在p-adic族中的变化,以获得数论中基本开放问题的新结果,例如格林伯格关于希达族中L函数消失的一般阶的猜想,Birch和Swinnerton-Dyer公式在秩0和1中的p部分,以及在塞尔默组的秩为2的椭圆曲线中构造显式类,这些曲线超出了我们目前对伯奇和斯温纳顿-戴尔猜想的理解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On anticyclotomic variants of the p -adic Birch and Swinnerton-Dyer conjecture
关于 p 进 Birch 和 Swinnerton-Dyer 猜想的反环剖变体
- DOI:10.5802/jtnb.1174
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Agboola, Adebisi;Castella, Francesc
- 通讯作者:Castella, Francesc
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesc Castella其他文献
On the $p$-part of the Birch-Swinnerton-Dyer formula for multiplicative primes
关于素数乘法 Birch-Swinnerton-Dyer 公式的 $p$ 部分
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Francesc Castella - 通讯作者:
Francesc Castella
Derived $p$-adic heights and the leading coefficient of the Bertolini--Darmon--Prasanna $p$-adic $L$-function
导出 $p$-adic 高度和 Bertolini--Darmon--Prasanna $p$-adic $L$-函数的首项系数
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Francesc Castella;Chi;Debanjana Kundu;Yu;Zheng Liu - 通讯作者:
Zheng Liu
Iwasawa Main Conjecture for Heegner Points: Supersingular Case
岩泽对海格纳点的主要猜想:超奇异情况
- DOI:
10.1112/s0010437x0500134x - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Francesc Castella;X. Wan - 通讯作者:
X. Wan
THE DIAGONAL CYCLE EULER SYSTEM FOR
对角循环欧拉系统
- DOI:
10.1017/s1474748023000221 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Raúl Alonso;Francesc Castella;Óscar Rivero - 通讯作者:
Óscar Rivero
Nonvanishing of generalised Kato classes and Iwasawa main conjectures
广义加藤类的不消失和岩泽主要猜想
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Francesc Castella - 通讯作者:
Francesc Castella
Francesc Castella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesc Castella', 18)}}的其他基金
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Continuing Grant
Elliptic Curves, p-adic Deformations, and Iwasawa Theory
椭圆曲线、p 进变形和岩泽理论
- 批准号:
2101458 - 财政年份:2021
- 资助金额:
$ 8.81万 - 项目类别:
Continuing Grant
Euler Systems, p-adic Deformations, and the Birch-Swinnerton-Dyer Conjecture
欧拉系统、p-adic 变形和 Birch-Swinnerton-Dyer 猜想
- 批准号:
1801385 - 财政年份:2018
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Continuing Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
- 批准号:
2338480 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Continuing Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 8.81万 - 项目类别:
Standard Grant














{{item.name}}会员




