Discrete Quantum Integrability, Quantum Q-Systems, and Generalized Macdonald Operators

离散量子可积性、量子 Q 系统和广义麦克唐纳算子

基本信息

  • 批准号:
    1802044
  • 负责人:
  • 金额:
    $ 26.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

This research project investigates questions at the intersection of mathematics and theoretical physics. The project is focused on questions that originate in statistical mechanics, which describes the average behavior of systems with large numbers of components. The algebraic study of these systems, and their symmetries, leads to new algebras, whose structure is in turn encoded combinatorially by collections of functions that arise as solutions to systems of equations. These new algebras, their generalizations, and the resulting combinatorics are the main topics to be studied. The research will be conducted in association with students at the graduate and undergraduate level, and will enhance our understanding of how these fields of study connect to each other.More precisely, the project concerns graded tensor products of cyclic current algebra modules, specifically Kirillov-Reshetikhin modules. The combinatorial framework is the quantum cluster algebra of the associated Q-systems, the solutions of which can be expressed in terms of plane tilings and non-intersecting path models. By investigating the discrete integrability of these systems, the investigators expect to produce conserved quantities, so far achieved only in type A. In turn, these should lead to difference equations for the graded characters of tensor product product, which generalize the difference Toda equations. Moreover, the solutions of these equations can be expressed as iterated action of difference creation operators, closely related to generalized Macdonald operators defined within the context of polynomial representations of double affine Hecke algebras. Relations to quantum affine and elliptic Hall algebras will also be investigated, as well as more combinatorial questions such as the existence of some (quantum) non-commutative counterpart to the Gessel-Viennot determinant for non-intersecting path enumeration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目调查数学和理论物理交叉的问题。该项目的重点是起源于统计力学的问题,它描述了具有大量组件的系统的平均行为。对这些系统及其对称性的代数学研究导致了新的代数,其结构又由作为方程组的解而出现的函数集合组合编码。这些新的代数,它们的推广,以及由此产生的组合学是要研究的主要课题。该研究将与研究生和本科生一起进行,并将增强我们对这些研究领域如何相互联系的理解。更确切地说,该项目涉及循环电流代数模的分级张量积,特别是Kirillov-Reshetikhin模。组合框架是相关Q系统的量子簇代数,其解可以用平面拼接和非相交路径模型表示。 通过研究这些系统的离散可积性,研究者们期望得到守恒量,迄今为止只有在A型系统中才能得到。进而得到张量积的分次特征标的差分方程,它推广了差分户田方程。此外,这些方程的解可以表示为差分生成算子的迭代作用,与双仿射Hecke代数的多项式表示中定义的广义Macdonald算子密切相关。与量子仿射和椭圆霍尔代数的关系也将被调查,以及更多的组合问题,如存在一些(量子)非交换对应的Gessel-Viennot行列式的非相交路径enumeration.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Macdonald Operators and Quantum Q-Systems for Classical Types
经典类型的麦克唐纳算子和量子 Q 系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Francesco, Philippe;Kedem, Rinat
  • 通讯作者:
    Kedem, Rinat
Exponents for Hamiltonian paths on random bicubic maps and KPZ
随机双三次映射和 KPZ 上哈密顿路径的指数
  • DOI:
    10.1016/j.nuclphysb.2023.116084
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Di Francesco, Philippe;Duplantier, Bertrand;Golinelli, Olivier;Guitter, Emmanuel
  • 通讯作者:
    Guitter, Emmanuel
Arctic Curves of the Twenty-Vertex Model with Domain Wall Boundaries
具有磁畴壁边界的二十顶点模型的北极曲线
  • DOI:
    10.1007/s10955-020-02518-y
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Debin, Bryan;Di Francesco, Philippe;Guitter, Emmanuel
  • 通讯作者:
    Guitter, Emmanuel
Arctic curves of the reflecting boundary six vertex and of the twenty vertex models
反射边界六顶点和二十顶点模型的北极曲线
A tangent method derivation of the arctic curve for q -weighted paths with arbitrary starting points
任意起始点 q 加权路径的北极曲线的正切法推导
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rinat Kedem其他文献

The Solution of the Quantum A 1 T-System for Arbitrary Boundary
  • DOI:
    10.1007/s00220-012-1488-x
  • 发表时间:
    2012-06-07
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Philippe Di Francesco;Rinat Kedem
  • 通讯作者:
    Rinat Kedem
( $${{\mathbf {t}}},{{\mathbf {q}}}$$ )-Deformed Q-Systems, DAHA and Quantum Toroidal Algebras via Generalized Macdonald Operators
  • DOI:
    10.1007/s00220-019-03472-x
  • 发表时间:
    2019-06-08
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Philippe Di Francesco;Rinat Kedem
  • 通讯作者:
    Rinat Kedem

Rinat Kedem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rinat Kedem', 18)}}的其他基金

IHP trimester program on Combinatorics and Interactions
IHP 组合学和相互作用三学期制课程
  • 批准号:
    1643027
  • 财政年份:
    2016
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
Integrable difference equations and characters of affine Lie algebras
可积差分方程及仿射李代数的性质
  • 批准号:
    1404988
  • 财政年份:
    2014
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
Affine algebra representations and discrete integrability
仿射代数表示和离散可积性
  • 批准号:
    1100929
  • 财政年份:
    2011
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
Algebraic and combinatorial structures in integrable systems
可积系统中的代数和组合结构
  • 批准号:
    0802511
  • 财政年份:
    2008
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
Structure of representations of infinite dimensional Lie algebras and conformal field theory
无限维李代数的表示结构和共形场论
  • 批准号:
    0500759
  • 财政年份:
    2005
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
POWRE: Representations of Quantum Affine Algebras and Integrable Models
POWRE:量子仿射代数和可积模型的表示
  • 批准号:
    9870550
  • 财政年份:
    1998
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Integrability
量子可积性
  • 批准号:
    2310594
  • 财政年份:
    2023
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Standard Grant
Quantum Cellular Automata Dynamics: Integrability, Many-Body Decoherence, and Complex Entanglement
量子元胞自动机动力学:可积性、多体退相干和复杂纠缠
  • 批准号:
    2210566
  • 财政年份:
    2022
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Continuing Grant
Integrability structure of quantum period and its application
量子周期的可积结构及其应用
  • 批准号:
    21K03570
  • 财政年份:
    2021
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum integrability from set theoretic Yang-Baxter & reflection equations
集合论 Yang-Baxter 的量子可积性
  • 批准号:
    EP/V008129/1
  • 财政年份:
    2021
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Research Grant
Quantum control designed from broken integrability
从破坏的可积性出发设计的量子控制
  • 批准号:
    DP200101339
  • 财政年份:
    2020
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Discovery Projects
Non-perturbative aspects of quantum field theories from integrability
量子场论的可积性的非微扰方面
  • 批准号:
    20J10126
  • 财政年份:
    2020
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study of Argyles-Douglas theory based on quantum integrability
基于量子可积性的Argyles-Douglas理论研究
  • 批准号:
    18K03643
  • 财政年份:
    2018
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics in Open Quantum Systems: strong Dissipation and Integrability
开放量子系统中的动力学:强耗散性和可积性
  • 批准号:
    406226865
  • 财政年份:
    2018
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Research Grants
Gauge Theory and Quantum Integrability
规范理论和量子可积性
  • 批准号:
    1936254
  • 财政年份:
    2017
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Studentship
Quantum integrability and symmetric functions
量子可积性和对称函数
  • 批准号:
    DE160100958
  • 财政年份:
    2016
  • 资助金额:
    $ 26.5万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了