Integrable difference equations and characters of affine Lie algebras
可积差分方程及仿射李代数的性质
基本信息
- 批准号:1404988
- 负责人:
- 金额:$ 18.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal uses insights gained from models used in mathematical physics in order to understand algebraic structures found in pure mathematics. The models are from a special class of models, called integrable models. This means that due to their high degree of symmetry, they have a sufficient number of conservation laws -- generalizing conservation of energy -- that they can be solved exactly. Such models can be found in statistical mechanics (discrete, possibly finite systems) and in quantum field theory (continuous, infinite-dimensional systems). There are many structures in mathematics that can be studied by using techniques and results from the solutions of such systems. They appear in combinatorics, number theory, representations of non-commutative algebras, and geometry, to name a few. The results of this project will advance understanding in all these areas. Frequently, integrable systems such as quantum spin chains in statistical mechanics, and conformal field theories and their massive deformations, can be described in representation-theoretical terms. For example, the transfer matrix of the Heisenberg spin chains can be given a meaning as a q-character of a finite-dimensional module of quantum affine algebras. The Hilbert space of integrable quantum field theories can be expressed as an infinite-dimensional modules of extensions of the (deformed) Virasoro algebra. Transfer matrices, and the characters of the Virasoro modules, satisfy difference equations or equations which can be shown to be discrete integrable equations. The transfer matrices satisfy a discrete Hirota-type equation which have interpretations as cluster algebra mutations. The following projects are proposed here: (1) The study of the difference equations satisfied by the non-commutative generating functions of graded conformal blocks of WZW theories (generalizations of Demazure modules). These generating functions are expressed in terms of the cluster variables in the quantum cluster algebra corresponding to Q-systems for characters of Kirillov-Reshetikhin modules; (2) The explicit solutions of these equations as fermionic character formulas; (3) The integrable structure of the difference equations; (4) The stabilized limits of these functions which give characters of affine algebra modules or Virasoro modules; (5) Solutions of discrete integrable equations known as T-systems and quantum T-systems (in the sense of quantum cluster algebras) and their relation to Nakajima's t,q-characters; (6) Higher-dimensional integrable difference equations, generalizing the T-systems viewed as Plucker relations, expressing the discrete structure of the higher-dimensional analogs of the pentagram maps in algebraic terms; and (7) Statistical path models which give explicit solutions for Whittaker vectors, functions and quantum Toda Hamiltonians for finite, affine and quantum algebras.
该建议使用从数学物理模型中获得的见解,以理解纯数学中发现的代数结构。这些模型来自一类特殊的模型,称为可积模型。这意味着,由于它们的高度对称性,它们有足够数量的守恒定律——推广能量守恒定律——可以精确地求解。这样的模型可以在统计力学(离散的,可能有限的系统)和量子场论(连续的,无限维的系统)中找到。在数学中有许多结构可以通过使用这些系统的解的技术和结果来研究。它们出现在组合学、数论、非交换代数的表示和几何中,仅举几例。该项目的成果将促进对所有这些领域的理解。通常,可积系统,如统计力学中的量子自旋链,共形场论及其大量变形,可以用表征理论术语来描述。例如,海森堡自旋链的传递矩阵可以被定义为量子仿射代数的有限维模块的q字符。可积量子场论的Hilbert空间可以表示为(变形的)Virasoro代数扩展的无限维模块。传递矩阵和Virasoro模块的性质满足差分方程或可以被证明为离散可积方程的方程。转移矩阵满足离散的hirota型方程,该方程可以解释为簇代数突变。本文提出了以下课题:(1)研究WZW理论(Demazure模的推广)中渐变共形块的非交换生成函数所满足的差分方程。对于Kirillov-Reshetikhin模的特征,用q系统对应的量子聚类代数中的聚类变量来表示这些生成函数;(2)这些方程的显式解作为费米子特征公式;(3)差分方程的可积结构;(4)给出仿射代数模或Virasoro模特征的函数的稳定极限;(5)离散可积方程的解,称为t系统和量子t系统(在量子簇代数意义上)及其与Nakajima的t,q字符的关系;(6)高维可积差分方程,将t系统推广为Plucker关系,用代数形式表达了五角形映射的高维类似物的离散结构;(7)给出有限、仿射和量子代数的惠特克向量、函数和量子Toda哈密顿量显式解的统计路径模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rinat Kedem其他文献
The Solution of the Quantum A 1 T-System for Arbitrary Boundary
- DOI:
10.1007/s00220-012-1488-x - 发表时间:
2012-06-07 - 期刊:
- 影响因子:2.600
- 作者:
Philippe Di Francesco;Rinat Kedem - 通讯作者:
Rinat Kedem
( $${{\mathbf {t}}},{{\mathbf {q}}}$$ )-Deformed Q-Systems, DAHA and Quantum Toroidal Algebras via Generalized Macdonald Operators
- DOI:
10.1007/s00220-019-03472-x - 发表时间:
2019-06-08 - 期刊:
- 影响因子:2.600
- 作者:
Philippe Di Francesco;Rinat Kedem - 通讯作者:
Rinat Kedem
Rinat Kedem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rinat Kedem', 18)}}的其他基金
Discrete Quantum Integrability, Quantum Q-Systems, and Generalized Macdonald Operators
离散量子可积性、量子 Q 系统和广义麦克唐纳算子
- 批准号:
1802044 - 财政年份:2018
- 资助金额:
$ 18.1万 - 项目类别:
Continuing Grant
IHP trimester program on Combinatorics and Interactions
IHP 组合学和相互作用三学期制课程
- 批准号:
1643027 - 财政年份:2016
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Affine algebra representations and discrete integrability
仿射代数表示和离散可积性
- 批准号:
1100929 - 财政年份:2011
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Algebraic and combinatorial structures in integrable systems
可积系统中的代数和组合结构
- 批准号:
0802511 - 财政年份:2008
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Structure of representations of infinite dimensional Lie algebras and conformal field theory
无限维李代数的表示结构和共形场论
- 批准号:
0500759 - 财政年份:2005
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
POWRE: Representations of Quantum Affine Algebras and Integrable Models
POWRE:量子仿射代数和可积模型的表示
- 批准号:
9870550 - 财政年份:1998
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
相似海外基金
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
- 批准号:
2302568 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Continuing Grant
Research on integrable two-dimensional partial difference equations using the theory of consistency around a cube property
基于立方体性质的一致性理论研究可积二维偏差分方程
- 批准号:
23K03145 - 财政年份:2023
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Difference equations and differential equations associated with accessory parameters
差分方程和与附件参数相关的微分方程
- 批准号:
22K03368 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
Population Dynamics via Integro-difference Equations
通过积分差分方程的种群动态
- 批准号:
561490-2021 - 财政年份:2021
- 资助金额:
$ 18.1万 - 项目类别:
University Undergraduate Student Research Awards
AF: Small: Solving and Simplifying Algebraic, Differential, and Difference Equations.
AF:小:求解和简化代数方程、微分方程和差分方程。
- 批准号:
2007959 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Standard Grant
A new departure for qualitative theory of diamond-alpha difference equations
金刚石-α差分方程定性理论的新起点
- 批准号:
20K03668 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of difference equations in the complex domains and its applications
复域差分方程研究及其应用
- 批准号:
20K03658 - 财政年份:2020
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theoretic enumerative invariants and q-difference equations
K 理论枚举不变量和 q 差分方程
- 批准号:
19F19802 - 财政年份:2019
- 资助金额:
$ 18.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




