Moduli and Periods
模数和周期
基本信息
- 批准号:1802128
- 负责人:
- 金额:$ 16.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is concerned with the study of geometric properties of objects that can be defined algebraically. Such objects, called algebraic varieties, are very special and have a rich structure. Consequently, techniques from other fields of mathematics, such as Arithmetic, Topology, and Differential Geometry, are employed in their study. Within algebraic geometry, this project studies the geometry of moduli spaces. A moduli space is the space of all shapes of objects with prescribed numerical invariants. The study of moduli spaces is of central importance to several branches of mathematics and theoretical physics. In particular, over the past three decades there were deep cross-influences between Mathematics and Physics centered around a special class of algebraic varieties, the Calabi-Yau threefolds, and their moduli. One of the main thrusts of this project is the development of tools for the study of moduli spaces of Calabi-Yau varieties. In this project, the moduli spaces are studied from the perspective of period maps. The period map is an essential tool for understanding the geometry of the moduli space of abelian varieties and K3 surfaces. Beyond these classical cases, the investigation of the period maps is much more difficult due to some non-trivial and highly transcendental conditions (the Griffiths' transversality conditions) satisfied by the Variations of Hodge Structure arising in the geometric setting. Nonetheless, recent progress in the field makes possible the investigation of some non-classical situations, especially surfaces of general type with small invariants, and Calabi-Yau threefolds. In a different direction, several questions about the geometry of the moduli space of K3 surfaces and hyper-Kaehler manifolds are investigated by means of period maps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是研究可以用代数定义的物体的几何性质的学科。这样的对象被称为代数变量,它们非常特殊,结构丰富。因此,从其他数学领域的技术,如算术,拓扑学和微分几何,被用于他们的研究。在代数几何中,这个项目研究模空间的几何。模空间是具有规定的数值不变量的物体的所有形状的空间。模空间的研究对数学和理论物理的几个分支都是至关重要的。特别是,在过去的三十年里,数学和物理之间产生了深刻的交叉影响,其核心是一类特殊的代数变体,即Calabi-Yau三倍函数及其模。该项目的主要目标之一是开发用于研究卡拉比-丘品种模空间的工具。在这个项目中,模空间是从时期地图的角度来研究的。周期映射是理解阿贝尔变体和K3曲面的模空间几何的重要工具。除了这些经典案例之外,由于几何环境中出现的Hodge结构的变化所满足的一些非平凡的和高度超越的条件(Griffiths'横截性条件),对周期图的研究要困难得多。尽管如此,该领域的最新进展使得研究一些非经典情况成为可能,特别是具有小不变量的一般型曲面和Calabi-Yau三倍曲面。在另一个方向上,利用周期映射研究了关于K3曲面和超kaehler流形模空间几何的几个问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Euler number of hyper-K¨ahler manifolds of OG10 type
- DOI:10.21711/231766362020/rmc477
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:K. Hulek;R. Laza;Giulia Saccà
- 通讯作者:K. Hulek;R. Laza;Giulia Saccà
Automorphisms and periods of cubic fourfolds
- DOI:10.1007/s00209-021-02810-x
- 发表时间:2019-05
- 期刊:
- 影响因子:0.8
- 作者:R. Laza;Zhiwei Zheng
- 通讯作者:R. Laza;Zhiwei Zheng
Hodge theory of degenerations, (I): consequences of the decomposition theorem
- DOI:10.1007/s00029-021-00675-w
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:M. Kerr;R. Laza;M. Saito
- 通讯作者:M. Kerr;R. Laza;M. Saito
A conjectural bound on the second Betti number for hyper-Kaehler manifolds
- DOI:10.24033/bsmf.2813
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Yoon-Joo Kim;R. Laza
- 通讯作者:Yoon-Joo Kim;R. Laza
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Radu Laza其他文献
Radu Laza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Radu Laza', 18)}}的其他基金
K-Trivial Varieties - Degenerations, Automorphisms, and Periods
K-平凡簇 - 简并、自同构和周期
- 批准号:
2101640 - 财政年份:2021
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Hodge theory, Moduli and Representation theory
FRG:协作研究:霍奇理论、模数和表示理论
- 批准号:
1361143 - 财政年份:2014
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
CAREER: Advances in Hodge Theory and Moduli
职业:霍奇理论和模数的进展
- 批准号:
1254812 - 财政年份:2013
- 资助金额:
$ 16.51万 - 项目类别:
Continuing Grant
Moduli Spaces - Geometry and Arithmetic
模空间 - 几何和算术
- 批准号:
1200875 - 财政年份:2012
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
Arithmetic and Geometry of Calabi-Yau Varieties Workshop
Calabi-Yau品种的算术和几何工作坊
- 批准号:
1100007 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
- 批准号:
0968968 - 财政年份:2009
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
Birational Geometry of Moduli Spaces and Applications
模空间双有理几何及其应用
- 批准号:
0856203 - 财政年份:2009
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
相似海外基金
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V006630/1 - 财政年份:2024
- 资助金额:
$ 16.51万 - 项目类别:
Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V007289/1 - 财政年份:2024
- 资助金额:
$ 16.51万 - 项目类别:
Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V006509/1 - 财政年份:2024
- 资助金额:
$ 16.51万 - 项目类别:
Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V006517/1 - 财政年份:2024
- 资助金额:
$ 16.51万 - 项目类别:
Research Grant
Assessing Amazon forest vulnerability and resilience to dry periods across soil moisture and microenvironmental gradients
评估亚马逊森林在土壤湿度和微环境梯度下的干旱期脆弱性和恢复能力
- 批准号:
2882399 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Studentship
A Study of Iconography on Christianity in the Late Meiji and Taisho Periods.
明治末大正时期基督教图像学研究。
- 批准号:
23KJ1545 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
- 批准号:
23KJ0801 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A Local Historical Study of Adult and Community Education Concerned with Social Work in the Taisho and Early Showa Periods
大正和昭和初期与社会工作有关的成人和社区教育的地方历史研究
- 批准号:
23K02082 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sensitive periods for prenatal alcohol exposure: a longitudinal study of DNA methylation and subsequent mental health
产前酒精暴露的敏感期:DNA 甲基化和随后心理健康的纵向研究
- 批准号:
10573715 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
- 批准号:
2315613 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant